Design of plastic components
![]() | This article provides insufficient context for those unfamiliar with the subject.(September 2015) |
![]() | This article may be too technical for most readers to understand.(September 2015) |
![]() | It has been suggested that this article be merged into Injection molding. (Discuss) Proposed since September 2015. |
Injection molding has been one of the most popular ways for fabricating plastic parts for a very long time. They are used in automotive interior parts, electronic housings, housewares, medical equipment, compact discs, and even doghouses. Below are certain rule based standard guidelines which can be referred to while designing parts for injection molding considering manufacturability in mind. [1]


== Geometric Considerations ==
The most common guidelines refer to the specification of various relationships between geometric parameters which result in easier or better manufacturability. Some of these are as follows:
Mold Wall Thickness
Non-uniform wall sections can contribute to warpage and stresses in molded parts. Sections which are too thin have a higher chance of breakage in handling, may restrict the flow of material and may trap air causing a defective part. Too heavy a wall thickness, on the other hand, will slow the curing cycle and add to material cost and increase cycle time.
Generally, thinner walls are more feasible with small parts rather than with large ones. The limiting factor in wall thinness is the tendency for the plastic material in thin walls to cool and solidify before the mold is filled. The shorter the material flow, the thinner the wall can be. Walls also should be as uniform in thickness as possible to avoid warpage from uneven shrinkage. When changes in wall thickness are unavoidable, the transition should be gradual and not abrupt.
Some plastics are more sensitive to wall thickness than others 鈥� where acetal and ABS plastics max out at around 0.12 in. thick (3 mm), acrylic can go to 0.5 in. (12 mm), polyurethane to 0.75 in. (18 mm), and certain fiber-reinforced plastics to 1 in. (25 mm) or more. Even so, designers should recognize that very thick cross sections can increase the likelihood of cosmetic defects like sink. [2]
Draft angles
Draft angle design is an important factor when designing plastic parts. Because of shrinkage of plastic material, injection molded parts have a tendency to shrink onto a core. This creates higher contact pressure on the core surface and increases friction between the core and the part, thus making ejection of the part from the mold difficult. Hence, draft angles should be designed properly to assist in part ejection. This also reduces cycle time and improves productivity. Draft angles should be used on interior and exterior walls of the part along the pulling direction.
The minimum allowable draft angle is harder to quantify. Plastic material suppliers and molders are the authority on what is the lowest acceptable draft. In most instances, 1掳 per side will be sufficient, but between 2掳 and 5掳 per side would be preferable. If the design is not compatible with 1掳, then allow for 0.5掳 on each side. Even a small draft angle, such as 0.25掳, is preferable to none at all.[3]
Radius at corners
Generously rounded corners provide a number of advantages. There is less stress concentration on the part and on the tool. Because of sharp corners, material flow is not smooth and tends to be difficult to fill, reduces tooling strength and causes stress concentration. Parts with radii and fillets are more economical and easier to produce, reduce chipping, simplify mold construction and add strength to molded part with good appearance.
Sharp Corners guidelines in injection moldingGeneral design guideline suggests that corner radii should be at least one-half the wall thickness. It is recommended to avoid sharp corners and use generous fillets and radii whenever required. During injection molding, the molten plastic has to navigate turns or corners. Rounded corners will ease plastic flow, so engineers should generously radius the corners of all parts. In contrast, sharp inside corners result in molded-in stress鈥攑articularly during the cooling process when the top of the part tries to shrink and the material pulls against the corners. Moreover, the first rule of plastic design鈥攗niform wall thickness鈥攚ill be obeyed. As the plastic goes around a well-proportioned corner, it wi
Geometric Considerations
The most common guidelines refer to the specification of various relationships between geometric parameters which result in easier or better manufacturability. Some of these are as follows:
Mold Wall Thickness
Non-uniform wall sections can contribute to warpage and stresses in molded parts. Sections which are too thin have a higher chance of breakage in handling, may restrict the flow of material and may trap air causing a defective part. Too heavy a wall thickness, on the other hand, will slow the curing cycle and add to material cost and increase cycle time.
Generally, thinner walls are more feasible with small parts rather than with large ones. The limiting factor in wall thinness is the tendency for the plastic material in thin walls to cool and solidify before the mold is filled. The shorter the material flow, the thinner the wall can be. Walls also should be as uniform in thickness as possible to avoid warpage from uneven shrinkage. When changes in wall thickness are unavoidable, the transition should be gradual and not abrupt.
Some plastics are more sensitive to wall thickness than others 鈥� where acetal and ABS plastics max out at around 0.12 in. thick (3 mm), acrylic can go to 0.5 in. (12 mm), polyurethane to 0.75 in. (18 mm), and certain fiber-reinforced plastics to 1 in. (25 mm) or more. Even so, designers should recognize that very thick cross sections can increase the likelihood of cosmetic defects like sink. [4]
Draft angles
Draft angle design is an important factor when designing plastic parts. Because of shrinkage of plastic material, injection molded parts have a tendency to shrink onto a core. This creates higher contact pressure on the core surface and increases friction between the core and the part, thus making ejection of the part from the mold difficult. Hence, draft angles should be designed properly to assist in part ejection. This also reduces cycle time and improves productivity. Draft angles should be used on interior and exterior walls of the part along the pulling direction.
The minimum allowable draft angle is harder to quantify. Plastic material suppliers and molders are the authority on what is the lowest acceptable draft. In most instances, 1掳 per side will be sufficient, but between 2掳 and 5掳 per side would be preferable. If the design is not compatible with 1掳, then allow for 0.5掳 on each side. Even a small draft angle, such as 0.25掳, is preferable to none at all.[5]
Radius at corners
Generously rounded corners provide a number of advantages. There is less stress concentration on the part and on the tool. Because of sharp corners, material flow is not smooth and tends to be difficult to fill, reduces tooling strength and causes stress concentration. Parts wit