Jump to content

Unit root test

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Dexbot (talk | contribs) at 17:19, 3 September 2015 (Bot: Deprecating Template:Cite doi and some minor fixes). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In statistics, a unit root test tests whether a time series variable is non-stationary using an autoregressive model. A well-known test that is valid in large samples is the augmented Dickey–Fuller test. The optimal finite sample tests for a unit root in autoregressive models were developed by Denis Sargan and Alok Bhargava. Another test is the Phillips–Perron test. These tests use the existence of a unit root as the null hypothesis.

See also

References

  • Dickey, D. A.; Fuller, W. A. (1979). "Distribution of the Estimators for Autoregressive Time Series with a Unit Root". Journal of the American Statistical Association. 74 (366a): 427–431. doi:10.1080/01621459.1979.10482531.
  • Sargan, J. D.; Bhargava, Alok (1983). "Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk". Econometrica. 51 (1): 153–174. JSTOR 1912252. {{cite journal}}: Cite has empty unknown parameter: |doix= (help)
  • Bhargava, A. (1986). "On the Theory of Testing for Unit Roots in Observed Time Series". The Review of Economic Studies. 53 (3): 369–384. doi:10.2307/2297634. JSTOR 2297634.
  • Bierens, H.J. (2001). "Unit Roots," Ch. 29 in A Companion to Econometric Theory, ed B. Baltagi, Oxford, Blackwell Publishers, 610–633. "2007 revision"
  • Enders, Walter (2004). Applied Econometric Time Series (Second ed.). New York: John Wiley. pp. 170–175. ISBN 0-471-23065-0.
  • Patterson, K. (2011), Unit Root Tests in Time Series, vol. 1, Palgrave Macmillan.
  • Patterson, K. (2012), Unit Root Tests in Time Series, vol. 2, Palgrave Macmillan.