Jump to content

Disorder problem

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by BattyBot (talk | contribs) at 09:35, 5 August 2015 (References: fixed citation template(s) to remove page from Category:CS1 maint: Extra text & general fixes using AWB (11334)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In the study of stochastic processes in mathematics, a disorder problem or quickest detection problem (formulated by Kolmogorov) is the problem of using ongoing observations of a stochastic process to detect as soon as possible when the probabilistic properties of the process have changed. This is a type of change detection problem.

An example case is to detect the change in the drift parameter of a Wiener process.[1]

Notes

  1. ^ Shiryaev (2007) page 208

References

  • H. Vincent Poor and Olympia Hadjiliadis (2008). Quickest Detection (First ed.). Cambridge: Cambridge University Press. ISBN 978-0-521-62104-5.
  • Shiryaev, Albert N. (2007). Optimal Stopping Rules. Springer. ISBN 3-540-74010-4.
  • Gapeev, P.V. (2005) The disorder problem for compound Poisson processes with exponential jumps. Ann. Appl. Probab. Volume 15, Number 1A, 487–499. [1]
  • Kolmogorov, A. N., Prokhorov, Yu. V. and Shiryaev, A. N. (1990). Methods of detecting spontaneously occurring effects. Proc. Steklov Inst. Math. 1, 1–21.