Jump to content

Shift matrix

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Anita5192 (talk | contribs) at 22:17, 11 July 2015 (Separated Notes and References per WP:FNNR.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a shift matrix is a binary matrix with ones only on the superdiagonal or subdiagonal, and zeroes elsewhere. A shift matrix U with ones on the superdiagonal is an upper shift matrix. The alternative subdiagonal matrix L is unsurprisingly known as a lower shift matrix. The (i,j):th component of U and L are

where is the Kronecker delta symbol.

For example, the 5×5 shift matrices are

Clearly, the transpose of a lower shift matrix is an upper shift matrix and vice versa.

Premultiplying a matrix A by a lower shift matrix results in the elements of A being shifted downward by one position, with zeroes appearing in the top row. Postmultiplication by a lower shift matrix results in a shift left. Similar operations involving an upper shift matrix result in the opposite shift.

Clearly all shift matrices are nilpotent; an n by n shift matrix S becomes the null matrix when raised to the power of its dimension n.

Properties

Let L and U be the n by n lower and upper shift matrices, respectively. The following properties hold for both U and L. Let us therefore only list the properties for U:


The following properties show how U and L are related:

  • LT = U; UT = L
  • The spectrum of U and L is . The algebraic multiplicity of 0 is n, and its geometric multiplicity is 1. From the expressions for the null spaces, it follows that (up to a scaling) the only eigenvector for U is , and the only eigenvector for L is .
  • For LU and UL we have
These matrices are both idempotent, symmetric, and have the same rank as U and L
  • Ln-aUn-a + LaUa = Un-aLn-a + UaLa = I (the identity matrix), for any integer a between 0 and n inclusive.

Examples


Then


Clearly there are many possible permutations. For example, is equal to the matrix A shifted up and left along the main diagonal.


See also

Notes


References