Jump to content

K-convex function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Liuzhe821 (talk | contribs) at 23:16, 24 June 2015. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Template:New unreviewed article K-convex functions, first introduced by Scarf,[1] are a special class of convex functions which is crucial in the proof of the optimality of the policy in inventory control theory. The policy is characterized by two numbers s and S, , such that when the inventory level falls below level s, an order is issued for a quantity that brings the inventory up to level S, and nothing is ordered otherwise.

Definition

Two equivalent definitions are as follows:

Definition 1 (The original definition)

A function is K-convex if

for any and .

Definition 2 (Definition with geometric interpretation)

A function is K-convex if

for all , where .

This definition admits a simple geometric interpretation related to the concept of visibility.[2] Let . A point is said to be visible from if all intermediate points lie below the line segment joining these two points. Then the geometric characterization of K-convexity can be obtain as:

A function is K-convex if and only if is visible from for all .

Proof of Equivalence

It is sufficient to prove that the above definitions can be transformed to each other. This can be seen by using the transformation

Properties

Property 1

If is K-convex, then it is L-convex for any . In particular, if is convex, then it is also K-convex for any .

Property 2

If is K-convex and is L-convex, then for is -convex.

Property 3

If is K-convex and is a random variable such that for all , then is also K-convex.

Property 4

If is a continuous K-convex function and as , then there exit scalars and with such that

  • , for all ;
  • , for all ;
  • is a decreasing function on ;
  • for all with .

Notes

  1. ^ Scarf, H. (1960). The Optimality of (S, s) Policies in the Dynamic Inventory Problem. Stanford, CA: Stanford University Press. p. Chapter 13.
  2. ^ Kolmogorov, A. N.; Fomin, S. V. (1970). Introduction to Real Analysis. New York: Dover Publications Inc.