Jump to content

Formally smooth map

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 129.104.3.5 (talk) at 12:20, 17 June 2015 (Removed false statement. Counterexample here http://mathoverflow.net/questions/195/is-there-an-example-of-a-formally-smooth-morphism-which-is-not-smooth. What should be true is that a formally smooth homomorphism between Noetherian rings is flat.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In algebraic geometry and commutative algebra, a ring homomorphism is called formally smooth (from French: Formellement lisse) if it satisfies the following infinitesimal lifting property:

Suppose B is given the structure of an A-algebra via the map f. Given a commutative A-algebra, C, and a nilpotent ideal , any A-algebra homomorphism may be lifted to an A-algebra map . If moreover any such lifting is unique, then f is said to be formally étale.[1][2]

Formally smooth maps were defined by Alexander Grothendieck in Éléments de géométrie algébrique IV.

For finitely presented morphisms, formal smoothness is equivalent to usual notion of smoothness.

References

  1. ^ Grothendieck, Alexandre; Dieudonné, Jean (1964). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie". Publications Mathématiques de l'IHÉS. 20: 5–259. doi:10.1007/bf02684747. MR 0173675.
  2. ^ Grothendieck, Alexandre; Dieudonné, Jean (1967). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie". Publications Mathématiques de l'IHÉS. 32: 5–361. doi:10.1007/bf02732123. MR 0238860.