From Wikipedia, the free encyclopedia
In mathematics, the Griewank function is often used in testing of optimization, and is defined as follows;[1]

First-order Griewank function
![{\displaystyle g:=1+(1/4000)\cdot x[1]^{2}-\cos(x[1])}](/media/api/rest_v1/media/math/render/svg/306314e5609e9478da133042e9c73afaacdec251)
First order Griewank function has multiple maxima and minima.[2]
Let the derivative of Griewank function be zero:
![{\displaystyle {\frac {1}{2000}}\cdot x[1]+\sin(x[1])=0}](/media/api/rest_v1/media/math/render/svg/72682a5f0bc8751235bb9a306e7462ae7f630392)
Second-order Griewank function

Third order Griewank function

References
- ^ Griewank, A. O. "Generalized Decent for Global Optimization." J. Opt. Th. Appl. 34, 11–39, 1981
- ^ Locatelli, M. "A Note on the Griewank Test Function." J. Global Opt. 25, 169–174, 2003