Discrete optimization
Appearance
Discrete optimization is a branch of optimization in applied mathematics and computer science.
Scope
As opposed to continuous optimization, the variables used in the mathematical program (or some of them) are restricted to assume only a finite or discrete set of values, such as the integers.[1]
Branches
Two notable branches of discrete optimization are:[2]
- combinatorial optimization, which refers to problems on graphs, matroids and other discrete structures
- integer programming
These branches are closely intertwined however since many combinatorial optimization problems can be modeled as integer programs (e.g. shortest path) and conversely, integer programs can often be given a combinatorial interpretation.
See also
References
- ^ Lee, Jon (2004), A First Course in Combinatorial Optimization, Cambridge Texts in Applied Mathematics, vol. 36, Cambridge University Press, p. 1, ISBN 9780521010122.
- ^ Hammer, P. L.; Johnson, E. L.; Korte, B. H. (2000), "Conclusive remarks", Discrete Optimization II, Annals of Discrete Mathematics, vol. 5, Elsevier, pp. 427–453.