From Wikipedia, the free encyclopedia
In mathematics, the Sinhc function appears frequently in papers about optical scattering[ 1] ,Heisenberg Spacetime[ 2] and hyperbolic geometry[ 3] .It is defined as[ 4] [ 5]
Sinhc
(
z
)
=
sinh
(
z
)
z
{\displaystyle \operatorname {Sinhc} (z)={\frac {\sinh(z)}{z}}}
It is a solution of the following differential equation:
w
(
z
)
z
−
2
d
d
z
w
(
z
)
−
z
d
2
d
z
2
w
(
z
)
=
0
{\displaystyle w\left(z\right)z-2\,{\frac {d}{dz}}w\left(z\right)-z{\frac {d^{2}}{d{z}^{2}}}w\left(z\right)=0}
Sinhc 2D plot
Sinhc'(z) 2D plot
Sinhc integral 2D plot
Imaginary part in complex plane
Im
(
sinh
(
x
+
i
y
)
x
+
i
y
)
{\displaystyle \operatorname {Im} \left({\frac {\sinh(x+iy)}{x+iy}}\right)}
Real part in complex plane
Re
(
sinh
(
x
+
i
y
)
x
+
i
y
)
{\displaystyle \operatorname {Re} \left({\frac {\sinh \left(x+iy\right)}{x+iy}}\right)}
absolute magnitude
|
sinh
(
x
+
i
y
)
x
+
i
y
|
{\displaystyle \left|{\frac {\sinh(x+iy)}{x+iy}}\right|}
First-order derivative
1
−
sinh
(
z
)
)
2
z
−
sinh
(
z
)
z
2
{\displaystyle {\frac {1-\sinh(z))^{2}}{z}}-{\frac {\sinh(z)}{z^{2}}}}
Real part of derivative
−
Re
(
−
1
−
(
sinh
(
x
+
i
y
)
)
2
x
+
i
y
+
sinh
(
x
+
i
y
)
(
x
+
i
y
)
2
)
{\displaystyle -\operatorname {Re} \left(-{\frac {1-(\sinh(x+iy))^{2}}{x+iy}}+{\frac {\sinh(x+iy)}{(x+iy)^{2}}}\right)}
Imaginary part of derivative
−
Im
(
−
1
−
(
sinh
(
x
+
i
y
)
)
2
x
+
i
y
+
sinh
(
x
+
i
y
)
(
x
+
i
y
)
2
)
{\displaystyle -\operatorname {Im} \left(-{\frac {1-(\sinh(x+iy))^{2}}{x+iy}}+{\frac {\sinh(x+iy)}{(x+iy)^{2}}}\right)}
absolute value of derivative
|
−
1
−
(
sinh
(
x
+
i
y
)
)
2
x
+
i
y
+
sinh
(
x
+
i
y
)
(
x
+
i
y
)
2
|
{\displaystyle \left|-{\frac {1-(\sinh(x+iy))^{2}}{x+iy}}+{\frac {\sinh(x+iy)}{(x+iy)^{2}}}\right|}
In terms of other special functions
Sinhc
(
z
)
=
K
u
m
m
e
r
M
(
1
,
2
,
2
z
)
e
z
{\displaystyle \operatorname {Sinhc} (z)={\frac {{\rm {KummerM}}\left(1,\,2,\,2\,z\right)}{{\rm {e}}^{z}}}}
Sinhc
(
z
)
=
H
e
u
n
B
(
2
,
0
,
0
,
0
,
2
z
)
e
z
{\displaystyle \operatorname {Sinhc} (z)={\frac {{\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {z}}\right)}{{\rm {e}}^{z}}}}
Sinhc
(
z
)
=
1
/
2
W
h
i
t
t
a
k
e
r
M
(
0
,
1
/
2
,
2
z
)
z
{\displaystyle \operatorname {Sinhc} (z)=1/2\,{\frac {{\rm {WhittakerM}}\left(0,\,1/2,\,2\,z\right)}{z}}}
Series expansion
Sinhc
z
≈
(
1
+
1
3
z
2
+
2
15
z
4
+
17
315
z
6
+
62
2835
z
8
+
1382
155925
z
10
+
21844
6081075
z
12
+
929569
638512875
z
14
+
O
(
z
16
)
)
{\displaystyle \operatorname {Sinhc} z\approx (1+{\frac {1}{3}}{z}^{2}+{\frac {2}{15}}{z}^{4}+{\frac {17}{315}}{z}^{6}+{\frac {62}{2835}}{z}^{8}+{\frac {1382}{155925}}{z}^{10}+{\frac {21844}{6081075}}{z}^{12}+{\frac {929569}{638512875}}{z}^{14}+O\left({z}^{16}\right))}
Gallery
Sinhc abs complex 3D
Sinhc Im complex 3D plot
Sinhc Re complex 3D plot
Sinhc'(z) Im complex 3D plot
Sinhc'(z) Re complex 3D plot
Sinhc'(z) abs complex 3D plot
Sinhc abs plot
Sinhc Im plot
Sinhc Re plot
Sinhc'(z) Im plot
Sinhc'(z) abs plot
Sinhc'(z) Re plot
See also
Tanc function
Tanhc function
References
^ PN Den Outer, TM Nieuwenhuizen, A Lagendijk,Location of objects in multiple-scattering media,JOSA A, Vol. 10, Issue 6, pp. 1209-1218 (1993)
^ T Körpinar ,New characterizations for minimizing energy of biharmonic particles in Heisenberg spacetime - International Journal of Theoretical Physics, 2014 - Springer
^ Nilg¨un S¨onmez,A Trigonometric Proof of the Euler Theorem in Hyperbolic Geometry,International Mathematical Forum, 4, 2009, no. 38, 1877 - 1881
^ JHM ten Thije Boonkkamp, J van Dijk, L Liu,Extension of the complete flux scheme to systems of conservation laws,J Sci Comput (2012) 53:552–568,DOI 10.1007/s10915-012-9588-5
^ Weisstein, Eric W. "Sinhc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SinhcFunction.html