Jump to content

Probability vector

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by David Eppstein (talk | contribs) at 07:11, 2 February 2015 (oops, untag). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Stochastic vector redirects here. For the concept of a random vector, see Multivariate random variable. In mathematics and statistics, a probability vector or stochastic vector is a vector with non-negative entries that add up to one.

The positions (indices) of a probability vector represent the possible outcomes of a discrete random variable, and the vector gives us the probability mass function of that random variable, which is the standard way of characterizing a discrete probability distribution.[1]

Examples

Here are some examples of probability vectors. The vectors can be either columns or rows.

Geometric interpretation

Writing out the vector components of a vector as

the vector components must sum to one:

Each individual component must have a probability between zero and one:

for all . These two requirements show that stochastic vectors have a geometric interpretation: A stochastic vector is a point on the "far face" of a standard orthogonal simplex. That is, a stochastic vector uniquely identifies a point on the face opposite of the orthogonal corner of the standard simplex.[2]

Properties

  • The mean of any probability vector is .
  • The shortest probability vector has the value as each component of the vector, and has a length of .
  • The longest probability vector has the value 1 in a single component and 0 in all others, and has a length of 1.
  • The shortest vector corresponds to maximum uncertainty, the longest to maximum certainty.
  • The length of a probability vector is equal to ; where is the variance of the elements of the probability vector.

See also

  1. ^ Jacobs, Konrad (1992), Discrete Stochastics, Basler Lehrbücher [Basel Textbooks], vol. 3, Birkhäuser Verlag, Basel, p. 45, doi:10.1007/978-3-0348-8645-1, ISBN 3-7643-2591-7, MR 1139766.
  2. ^ Gibilisco, Paolo; Riccomagno, Eva; Rogantin, Maria Piera; Wynn, Henry P. (2010), "Algebraic and geometric methods in statistics", Algebraic and geometric methods in statistics, Cambridge Univ. Press, Cambridge, pp. 1–24, MR 2642656. See in particular p. 12.