Computational number theory
Appearance
In mathematics and computer science, computational number theory, also known as algorithmic number theory, is the scientific study and indepth observational analysis of algorithms for performing number theoretic computations. The best known complex problem in the field is integer factorization.
See also
- Computational complexity of mathematical operations
- Sage Math
- Number Theory Library
- PARI/GP
- Fast Library for Number Theory
Further reading
- Eric Bach and Jeffrey Shallit, Algorithmic Number Theory, volume 1: Efficient Algorithms. MIT Press, 1996, ISBN 0-262-02405-5
- Buhler, J.P.; P., Stevenhagen, eds. (2008). Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography. MSRI Publications. Vol. 44. Cambridge University Press. ISBN 978-0-521-20833-8. Zbl 1154.11002.
- Henri Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 138, Springer-Verlag, 1993.
- Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer-Verlag, 2001, ISBN 0-387-94777-9
- Riesel, Hans (1994). Prime Numbers and Computer Methods for Factorization. Progress in Mathematics. Vol. 126 (second ed.). Boston, MA: Birkhäuser. ISBN 0-8176-3743-5. Zbl 0821.11001.
- Victor Shoup, A Computational Introduction to Number Theory and Algebra. Cambridge, 2005, ISBN 0-521-85154-8