Cramer–Castillon problem

In geometry, the Cramer-Castillon's Problem is a problem stated by the swiss mathematician Gabriel Cramer solved by the italian mathematician, resident in Berlin, Jean de Castillon in 1776.[1]
The problem consists on (see the image):
Let be a circle and three points in the same plane and not in , to construct every posible triangles inscribed in , whose sides (or his elongations) pass through respectively.
Centurys before, Pappus of Alexandria has been solved an special case: when the three points ara aligned. But the general case, had the reputation of being very difficult.[2]
After the geometrical construction of Castillon, Lagrange found an analytic solution, easier than Castillon's. In the begining of 19th century, Lazare Carnot generalized it to points.[3]
References
Bibliography
- Dieudonné, Jean (1992). "Some problems in Classical Mathematics". Mathematics — The Music of Reason. Springer. pp. 77–101. ISBN 978-3-642-08098-2.
{{cite book}}
: Cite has empty unknown parameters:|data=
,|lloc=
,|citació=
,|volum=
,|pàgina=
,|col·lecció=
,|edició=
,|mes=
, and|consulta=
(help) - Ostermann, Alexander; Wanner, Gerhard (2012). "6.9 The Cramer-Castillon problem". Geometry by Its History. Springer. pp. 175–178. ISBN 978-3-642-29162-3.
{{cite book}}
: Cite has empty unknown parameters:|lloc=
,|citació=
,|volum=
,|pàgina=
,|urlchapter=
,|col·lecció=
,|edició=
,|mes=
,|data=
, and|consulta=
(help) - Template:Cite article
External links
- Stark, Maurice (2002). "Castillon's problem" (PDF).