Generalized iterative scaling
Appearance
In statistics, GIS (generalized iterative scaling) and improved iterative scaling (IIS) are two early algorithms used to fit log-linear models,[1] notably multinomial logistic regression (MaxEnt) classifiers and extensions of it such as MaxEnt Markov models[2] and conditional random fields. These algorithms have been largely surpassed by gradient-based methods such as L-BFGS[3] and coordinate descent algorithms.[4]
See also
References
- ^ Darroch, J.N. and Ratcliff, D. (1972). "Generalized iterative scaling for log-linear models". The Annals of Mathematical Statistics. 43 (5). Institute of Mathematical Statistics: 1470–1480. doi:10.1214/aoms/1177692379.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ McCallum, Andrew; Freitag, Dayne; Pereira, Fernando (2000). "Maximum Entropy Markov Models for Information Extraction and Segmentation" (PDF). Proc. ICML 2000. pp. 591–598.
{{cite conference}}
: Unknown parameter|booktitle=
ignored (|book-title=
suggested) (help) - ^ Malouf (2002). A comparison of algorithms for maximum entropy parameter estimation (PDF). Sixth Conf. on Natural Language Learning (CoNLL). pp. 49–55.
{{cite conference}}
:|first=
missing|last=
(help) - ^ Yu, Hsiang-Fu; Huang, Fang-Lan; Lin, Chih-Jen (2011). "Dual coordinate descent methods for logistic regression and maximum entropy models" (PDF). Machine Learning. 85: 41–75. doi:10.1007/s10994-010-5221-8.