Jump to content

Climate model

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Gaba p (talk | contribs) at 12:43, 3 November 2014 (Reverted good faith edits by 122.163.212.124 (talk): Unnecessary. (TW)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
This article is about the theories and mathematics of climate modeling. For computer-driven prediction of Earth's climate, see Global climate model.
Climate models are systems of differential equations based on the basic laws of physics, fluid motion, and chemistry. To “run” a model, scientists divide the planet into a 3-dimensional grid, apply the basic equations, and evaluate the results. Atmospheric models calculate winds, heat transfer, radiation, relative humidity, and surface hydrology within each grid and evaluate interactions with neighboring points.

Climate models use quantitative methods to simulate the interactions of the atmosphere, oceans, land surface, and ice. They are used for a variety of purposes from study of the dynamics of the climate system to projections of future climate. The most talked-about use of climate models in recent years has been to project temperature changes resulting from increases in atmospheric concentrations of greenhouse gases.

All climate models take account of incoming energy from the sun as short wave electromagnetic radiation, chiefly visible and short-wave (near) infrared, as well as outgoing energy as long wave (far) infrared electromagnetic radiation from the earth. Any imbalance results in a change in temperature.

Models can range from relatively simple to quite complex:

  • A simple radiant heat transfer model that treats the earth as a single point and averages outgoing energy
  • this can be expanded vertically (radiative-convective models), or horizontally
  • finally, (coupled) atmosphere–ocean–sea ice global climate models include the full equations for mass and energy transfer and radiant exchange.
  • EMICs include land use changes, thus allows researchers to predict the interaction between climate and ecosystems.

Climate models

Climate models include IGCM, HadCM3, HadGEM1, GFDL CM, CGCM, CCSM, CFS, and ECHAM. Types of climate models include, Atmospheric model, Atmospheric dispersion modeling, Numerical weather prediction, Tropical cyclone forecast model, Chemical transport model, Ensemble forecasting, Model output statistics, or Meteorological reanalysis.

When studying climate change, climate scientists use the standard protocol Coupled Model Intercomparison Project (CMIP).[1] Since Earth's radiation balance plays a key role as climate driver, it is crucial when modeling the climate system. especially for regional climate.[2]

Earth-system models of intermediate complexity (EMICs)

Earth system models of intermediate complexity, include changes in forcing from solar luminosity (or solar constant), and the related Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. EMICs where used in the IPCC AR5 report, and calculated significant land-use emissions over the pre-industrial period. This suggests, that land-use emissions are important to understand estimates in Earth past climate–carbon feedbacks.[3]

General circulation models (GCMs)

A General Circulation Model (or Global Climate Model), includes the physics of the atmosphere, and can be coupled with other parts of the climate system, often the ocean, sea ice and land surface as well.[4]

The first general circulation climate model that combined both oceanic and atmospheric processes was developed in the late 1960s at the NOAA Geophysical Fluid Dynamics Laboratory.[5] Models may be coupled to models of other processes, such as the carbon cycle, to better understand feedback effects. Such integrated multi-system models are sometimes referred to as either "earth system models" or "global climate models."

Radiative-convective models (RCM)

One-dimensional, radiative-convective models were used to verify basic climate assumptions in the '80s and '90s.[6]

Research and development

There are three major types of institution where climate models are developed, implemented and used:

The World Climate Research Programme (WCRP), hosted by the World Meteorological Organization (WMO), coordinates research activities on climate modelling worldwide.

A 2012 U.S. National Research Council report discussed how the large and diverse U.S. climate modeling enterprise could evolve to become more unified.[7] Efficiencies could be gained by developing a common software infrastructure shared by all U.S. climate researchers, and holding an annual climate modeling forum, the report found.[8]

Climate models on the web

See also

Notes and references

  1. ^ Lawrence Livermore National Laboratory. "CMIP5 - Coupled Model Intercomparison Project Phase 5 - Overview".
  2. ^ Chiacchio, Marc; Solmon, Fabien; Giorgi, Filippo; Stackhouse, Paul, Jr. (April 2013). The global energy budget with a regional climate model over Europe. Copernicus. Bibcode:2013EGUGA..15.6581C.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^ European Geosciences Union (2013). "Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity". doi:10.5194/cp-9-1111-2013. {{cite journal}}: Cite journal requires |journal= (help)CS1 maint: unflagged free DOI (link)
  4. ^ RealClimate. "FAQ on climate models".
  5. ^ NOAA: The First Climate Model
  6. ^ Wang, W.C.; P.H. Stone (1980). "Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model". J. Atmos. Sci. 37: 545–52. Bibcode:1980JAtS...37..545W. doi:10.1175/1520-0469(1980)037<0545:EOIAFO>2.0.CO;2. Retrieved 2010-04-22.
  7. ^ "U.S. National Research Council Report, A National Strategy for Advancing Climate Modeling".
  8. ^ "U.S. National Research Council Report-in-Brief, A National Strategy for Advancing Climate Modeling".

Bibliography