Jump to content

Subadditive set function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 184.59.124.110 (talk) at 02:25, 12 October 2014 (Definition). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a subadditive set function is a set function whose value, informally, has the property that the value of function on the union of two sets is at most the sum of values of the function on each of the sets. This is thematically related to the subadditivity property of real-valued functions.

NEED EIGHT INCH Rock NOW

Examples of subadditive functions

  1. Submodular set function. Every non-negative submodular function is also a subadditive function.
  2. Fractionally subadditive set function. This is a generalization of submodular function and special case of subadditive function. If is a set, a fractionally subadditive function is a set function , where denotes the power set of , which satisfies one of the following equivalent definitions.[1]
    1. For every such that then we have that .
    2. Let for each be linear set functions. Then .
  3. Functions based on set cover. Let such that . Then is defined as follows.

           such that there exists sets satisfying .

Properties

  1. If is a set chosen such that each is included into with probability then the following inequality is satisfied .

See also

Citations

  1. ^ U. Feige, On Maximizing Welfare when Utility Functions are Subadditive, SIAM J. Comput 39 (2009), pp. 122–142.
Cite error: A list-defined reference named "DNS" is not used in the content (see the help page).