Jump to content

Timeline of computational mathematics

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Ema--or (talk | contribs) at 00:01, 21 August 2014 (Created page with ' == 1940s == * Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century) invented at Los Alamos by von Neumann, Ulam and Metropolis.<re...'). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

1940s

  • Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century) invented at Los Alamos by von Neumann, Ulam and Metropolis.[1][2][3]
  • First hydro simulations at Los Alamos occurred.[4][5]
  • Ulam and von Neumann introduce the notion of cellular automata.[6]

1950s

1960s

1970s


1980s

1990s

See also

References

  1. ^ Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125. {{cite journal}}: |volume= has extra text (help). Accessed 5 may 2012.
  2. ^ S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
  3. ^ N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335-341.
  4. ^ Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
  5. ^ A Method for the Numerical Calculation of Hydrodynamic Shocks. Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21, p.232-237
  6. ^ Von Neumann, J., Theory of Self-Reproduiing Automata, Univ. of Illinois Press, Urbana, 1966.
  7. ^ Charney, J.; Fjørtoft, R.; von Neumann, J. (November 1950). "Numerical Integration of the Barotropic Vorticity Equation". Tellus 2 (4).
  8. ^ See the review article:- Smagorinsky, J (1983). "The Beginnings of Numerical Weather Prediction and General Circulation Modelling: Early Recollections" (PDF). Advances in Geophysics. 25. Retrieved 6 June 2012.
  9. ^ Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409–436 (1952).
  10. ^ Eduard Stiefel,U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1–33 (1952).
  11. ^ Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33–53 (1952).
  12. ^ Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255–282 (1950).
  13. ^ Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics. 21 (6): 1087–1092. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114.
  14. ^ Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. Alder, B. J. , Frankel, S. P. , and Lewinson, B. A. , J. Chem. Phys., 23, 3 (1955).
  15. ^ http://www.hp9825.com/html/stan_frankel.html
  16. ^ Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed. , University of Chicago Press, Vol.II,978–988,1965. Recovered 21 Dec 2012
  17. ^ Alder, B. J.; T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459. Bibcode 1959JChPh..31..459A. doi:10.1063/1.1730376
  18. ^ Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405 – A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
  19. ^ Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
  20. ^ http://www.merriam-webster.com/dictionary/soliton ; retrieved 3 nov 2012.
  21. ^ Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences 20 (2): 130–141. 20 (2): 130. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
  22. ^ a b Verlet, Loup (1967). "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules". Physical Review. 159: 98–103. Bibcode:1967PhRv..159...98V. doi:10.1103/PhysRev.159.98.
  23. ^ Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 17.4. Second-Order Conservative Equations". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
  24. ^ B. Mandelbrot; Les objets fractals, forme, hasard et dimension (in French). Publisher: Flammarion (1975), ISBN 9782082106474; English translation Fractals: Form, Chance and Dimension. Publisher: Freeman, W. H & Company. (1977). ISBN 9780716704737.
  25. ^ Mandelbrot, Benoît B.; (1983). The Fractal Geometry of Nature. San Francisco: W.H. Freeman. ISBN 0-7167-1186-9.
  26. ^ Kenneth Appel and Wolfgang Haken, "Every planar map is four colorable, Part I: Discharging," Illinois Journal of Mathematics 21: 429–490, 1977.
  27. ^ Appel, K. and Haken, W. "Every Planar Map is Four-Colorable, II: Reducibility." Illinois J. Math. 21, 491-567, 1977.
  28. ^ Appel, K. and Haken, W. "The Solution of the Four-Color Map Problem." Sci. Amer. 237, 108-121, 1977.
  29. ^ L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
  30. ^ Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187-207.
  31. ^ L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.