Jump to content

Geometric modeling

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by JMP EAX (talk | contribs) at 22:00, 14 August 2014 (See also). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Geometric modeling is a branch of applied mathematics and computational geometry that studies methods and algorithms for the mathematical description of shapes.

The shapes studied in geometric modeling are mostly two- or three-dimensional, although many of its tools and principles can be applied to sets of any finite dimension. Today most geometric modeling is done with computers and for computer-based applications. Two-dimensional models are important in computer typography and technical drawing. Three-dimensional models are central to computer-aided design and manufacturing (CAD/CAM), and widely used in many applied technical fields such as civil and mechanical engineering, architecture, geology and medical image processing.[1]

Geometric models are usually distinguished from procedural and object-oriented models, which define the shape implicitly by an opaque algorithm that generates its appearance.[citation needed] They are also contrasted with digital images and volumetric models which represent the shape as a subset of a fine regular partition of space; and with fractal models that give an infinitely recursive definition of the shape. However, these distinctions are often blurred: for instance, a digital image can be interpreted as a collection of colored squares; and geometric shapes such as circles are defined by implicit mathematical equations. Also, a fractal model yields a parametric or implicit model when its recursive definition is truncated to a finite depth.

Notable awards of the area are the John A. Gregory Memorial Award[2] and the Bezier award.[3]

See also

References

Further reading

General textbooks:

  • Jean Gallier (1999). Curves and Surfaces in Geometric Modeling: Theory and Algorithms. Morgan Kaufmann. This book is out of print and freely available from the author.
  • Gerald E. Farin (2002). Curves and Surfaces for CAGD: A Practical Guide (5th ed.). Morgan Kaufmann. ISBN 978-1-55860-737-8.
  • Max K. Agoston (2005). Computer Graphics and Geometric Modelling: Mathematics. Springer Science & Business Media. ISBN 978-1-85233-817-6. and its companion Max K. Agoston (2005). Computer Graphics and Geometric Modelling: Implementation & Algorithms. Springer Science & Business Media. ISBN 978-1-84628-108-2.
  • Michael E. Mortenson (2006). Geometric Modeling (3rd ed.). Industrial Press. ISBN 978-0-8311-3298-9.

For multi-resolution (multiple level of detail) geometric modeling :

  • Armin Iske; Ewald Quak; Michael S. Floater (2002). Tutorials on Multiresolution in Geometric Modelling: Summer School Lecture Notes. Springer Science & Business Media. ISBN 978-3-540-43639-3.
  • Neil Dodgson; Michael S. Floater; Malcolm Sabin (2006). Advances in Multiresolution for Geometric Modelling. Springer Science & Business Media. ISBN 978-3-540-26808-6.