Jump to content

Bowyer–Watson algorithm

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by SupernovaPhoenix (talk | contribs) at 18:52, 5 August 2014 (added information about the complexity analysis). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In computational geometry, the Bowyer–Watson algorithm is a method for computing the Delaunay triangulation of a finite set of points in any number of dimensions. The algorithm can be used to obtain a Voronoi diagram of the points, which is the dual graph of the Delaunay triangulation.

The Bowyer–Watson algorithm is an incremental algorithm. It works by adding points, one at a time, to a valid Delaunay triangulation of a subset of the desired points. After every insertion, any triangles whose circumcircles contain the new point are deleted, leaving a star-shaped polygonal hole which is then re-triangulated using the new point. By using the connectivity of the triangulation to efficiently locate triangles to remove, the algorithm can take O(N log N) operations to triangulate N points, although special degenerate cases exist where this goes up to O(N2).[1]

The algorithm is sometimes known just as the Bowyer Algorithm or the Watson Algorithm. Adrian Bowyer and David Watson devised it independently of each other at the same time, and each published a paper on it in the same issue of The Computer Journal (see below).

See also

References

  • Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1093/comjnl/24.2.162, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1093/comjnl/24.2.162 instead.
  • Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1093/comjnl/24.2.167, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1093/comjnl/24.2.167 instead.
  • Efficient Triangulation Algorithm Suitable for Terrain Modelling generic explanations with source code examples in several languages.


  1. ^ Rebay, S. Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm. Journal of Computational Physics Volume 106 Issue 1, May 1993, p. 127.