Collapsing algebra
Appearance
In mathematics, a collapsing algebra is a type of Boolean algebra sometimes used in forcing to reduce ("collapse") the size of cardinals. Collapsing algebras, or at least the posets generating them, were introduced by Azriel Lévy.
Definition
If κ and λ are cardinals, then the Boolean algebra of regular open sets of the product space κλ is called a collapsing algebra.
References
- Bell, J. L. (1985) Boolean-Valued Models and Independence Proofs in Set Theory, Oxford. ISBN 0-19-853241-5
- Jech, Thomas (2002). Set theory, third millennium edition (revised and expanded). Springer. ISBN 3-540-44085-2. OCLC 174929965.