Generic matrix ring
In algebra, a generic matrix ring of size n with variables , denoted by , is a sort of a universal matrix ring. It is universal in the sense that, given a commutative ring R and n-by-n matrices over R, any mapping extends to the ring homomorphism (called evaluation) .
For example, a central polynomial is an element of the ring that will map to a central element under an evaluation.
Explicitly, given a field k, it is the subalgebra of the matrix ring generated by n-by-n matrices , where are matrix entries and commute by definition. For example, if m = 1, then is a polynomial ring in one variable.
By definition, is a quotient of the free ring with by the ideal consisting of all p that vanish identically on any n-by-n matrices over k. The universal property means that any ring homomorphism from to a matrix ring factors through . This has a following geometric meaning. In algebraic geometry, the polynomial ring is the coordinate ring of the affine space and to give a point of is to give a ring homomorphism (evaluation) (either by the Hilbert nullstellensatz or by the scheme theory). The free ring plays the role of the coordinate ring of the affine space in the noncommutative algebraic geometry (i.e., we don't demand free variables to commute) and thus a generic matrix ring of size n is the coordinate ring of a noncommutative affine variety whose points are the Spec's of matrix rings of size n (see below for a more concrete discussion.)
The maximum spectrum of a generic matrix ring
![]() | This section needs expansion. You can help by adding to it. (June 2014) |
References
- Artin, Michael (1999). "Noncommutative Rings" (PDF).
- Cohn, Paul M. (2003). Further algebra and applications (Revised ed. of Algebra, 2nd ed.). London: Springer-Verlag. ISBN 1-85233-667-6. Zbl 1006.00001.