Jump to content

Traffic estimation and prediction system

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Thickicesong (talk | contribs) at 18:07, 30 June 2006. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Traffic Estimation and Prediction System(TrEPS)

 Intelligent Transportation Systems (ITS) have the potential to improve traffic conditions and reduce travel delays by facilitating better utilization of available capacity. These systems exploit currently available and emerging computer, communication, and control technologies to monitor, manage, and control the transportation system. They also provide various levels of traffic information and trip advisory to system users, including many ITS service providers, so that travelers can make timely and informed travel decisions[1].

The success of ITS technology deployments is heavily dependent on the availability of timely and accurate estimates of prevailing and emerging traffic conditions. As such, there is a strong need for a “traffic prediction system”. The needed system is to utilize advanced traffic models to analyze data, especially real-time traffic data, from different sources to estimate and predict traffic conditions so that proactive Advanced Traffic Management Systems (ATMS) and Advanced Traveler Information Systems (ATIS) strategies can be implemented to meet various traffic control, management, and operation objectives. In USA, the FHWA R&D initiated a Dynamic Traffic Assignment (DTA) research project in 1994 to meet the need for a traffic prediction system and to help address complex traffic control and management issues in the dynamic ITS environment[2]. The main objective of this research is to develop a deployable real-time Traffic Estimation and Prediction System (TrEPS) to meet the information need in the ITS context. In October 1995, two parallel research contracts were awarded to Massachusetts Institute of Technology (MIT) and the University of Texas at Austin (UTX) with a follow-up development and support at the University of Maryland (UMD), respectively. Each team was required to develop a prototype of TrEPS demonstrating its potential for real time application capability. After three years of intensive R&D efforts, two prototype TrEPS were developed. The two prototype TrEPS developed by MIT and UTX/UMD are named DynaMIT-R[3][4] and DYNASMART-X[5], respectively. Both systems are simulation-based DTA system.

   In China, Xi’an Jiaotong University (XJTU) initiated a similar simulation-based DTA research project in 2000 with a follow-up development and support at the Shandong Academy of Sciences after 2004. Dr. Yong Lin is the project leader and Houbing Song is the earliest project member. After six years of intense R&D efforts, one prototype TrEPS was developed in 2006. The overall prototype TrEPS developed by Dr.Lin and his team which has more than 20 members is named DynaCHINA(Dynamic Consistent Hybrid Information based on Network Assignment).