Jump to content

Matrix normal distribution

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Entropeneur (talk | contribs) at 13:19, 23 May 2014 (Proof). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Matrix normal
Notation
Parameters

location (real matrix)
scale (positive-definite real matrix)

scale (positive-definite real matrix)
Support
PDF
Mean
Variance (among-row) and (among-column)

In statistics, the matrix normal distribution is a probability distribution that is a generalization of the multivariate normal distribution to matrix-valued random variables.

Definition

The probability density function for the random matrix X (n × p) that follows the matrix normal distribution has the form:

where denotes trace and M is n × p, U is n × n and V is p × p.

The matrix normal is related to the multivariate normal distribution in the following way:

if and only if

where denotes the Kronecker product and denotes the vectorization of .

Proof

The equivalence between the above matrix normal and multivariate normal density functions can be shown using several properties of the trace and Kronecker product, as follows. We start with the argument of the exponent of the matrix normal PDF:

which is the argument of the exponent of the multivariate normal PDF. The proof is completed by using the determinant property:

Properties

If , then we have the following properties:[1]

Expected values

The mean, or expected value is:

and we have the following second-order expectations:[2]

where denotes trace.

More generally, for appropriately dimensioned matrices A,B,C:

Transformation

Transpose transform:

Linear transform: let D (r-by-n), be of full rank r ≤ n and C (p-by-s), be of full rank s ≤ p, then:

Example

Let's imagine a sample of n independent p-dimensional random variables identically distributed according to a multivariate normal distribution:

.

When defining the n × p matrix for which the ith row is , we obtain:

where each row of is equal to , that is , is the n × n identity matrix, that is the rows are independent, and .

Relation to other distributions

Dawid (1981) provides a discussion of the relation of the matrix-valued normal distribution to other distributions, including the Wishart distribution, Inverse Wishart distribution and matrix t-distribution, but uses different notation from that employed here.

See also

References

  1. ^ A K Gupta; D K Nagar (22 October 1999). "Chapter 2: MATRIX VARIATE NORMAL DISTRIBUTION". Matrix Variate Distributions. CRC Press. ISBN 978-1-58488-046-2. Retrieved 23 May 2014.
  2. ^ Ding, Shanshan (2014). "DIMENSION FOLDING PCA AND PFC FOR MATRIX- VALUED PREDICTORS". Statistica Sinica. 24 (1): 463–492. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)