Comparison of general and generalized linear models
Appearance
General linear model | Generalized linear model | |
---|---|---|
Typical estimation method | Least squares, best linear unbiased prediction | Maximum likelihood or Bayesian |
Special cases | ANOVA, ANCOVA, MANOVA, MANCOVA, ordinary least squares, mixed model, t-test, F-test | ordinary least squares, logistic regression, Poisson regression, gamma regression[1] |
Function in R | lm() | glm() |
Function in Matlab | mvregress() | glmfit() |
Procedure in SAS | PROC GLM, PROC MIXED | PROC GENMOD (PROC LOGISTIC for logistic regression only) |
Command in Stata | regress | glm |
Command in SPSS | regression, glm | genlin, logistic regression |
Function in Mathematica | LinearModelFit[] | GeneralizedLinearModelFit[] |
Command in EViews | ls |
- ^ McCullagh, Peter (1989). Generalized Linear Models, Second Edition. Boca Raton: Chapman and Hall/CRC. ISBN 0-412-31760-5.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)
References
- McCullagh, Peter (1989). Generalized Linear Models, Second Edition. Boca Raton: Chapman and Hall/CRC. ISBN 0-412-31760-5.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)