Jump to content

Inferential theory of learning

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Yobot (talk | contribs) at 18:44, 29 March 2014 (WP:CHECKWIKI error fixes + other fixes, removed orphan tag using AWB (10067)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Inferential theory of learning (ITL) is an area of machine learning which describes inferential processes performed by learning agents. ITL has been developed by Ryszard S. Michalski in 1980s. In ITL learning process is viewed as a search (inference) through hypotheses space guided by a specific goal. Results of learning need to be stored, in order to be used in the future.

References

Further reading

  • Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell (1983), Machine Learning: An Artificial Intelligence Approach, Tioga Publishing Company, ISBN 0-935382-05-4.
    • Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell (1986), Machine Learning: An Artificial Intelligence Approach, Volume II, Morgan Kaufmann, ISBN 0-934613-00-1.
    • Yves Kodratoff, Ryszard S. Michalski (1990), Machine Learning: An Artificial Intelligence Approach, Volume III, Morgan Kaufmann, ISBN 1-55860-119-8.
    • Ryszard S. Michalski, George Tecuci (1994), Machine Learning: A Multistrategy Approach, Volume IV, Morgan Kaufmann, ISBN 1-55860-251-8.