Disk covering problem
Appearance
The disk covering problem asks for the smallest real number such that disks of radius can be arranged in such a way as to cover the unit disk. Dually, for a given radius ε, one wishes to find the smallest integer n such that n disks of radius ε can cover the unit disk.[1]
The best solutions to date are as follows:
n | r(n) | Symmetry |
---|---|---|
1 | 1 | All |
2 | 1 | All (2 stacked disks) |
3 | = 0.866025... | 120°, 3 reflections |
4 | = 0.707107... | 90°, 4 reflections |
5 | 0.609382... | 1 reflection |
6 | 0.555905... | 1 reflection |
7 | = 0.5 | 60°, 6 reflections |
8 | 0.445041... | ~51.4°, 7 reflections |
9 | 0.414213... | 45°, 8 reflections |
10 | 0.394930... | 36°, 9 reflections |
11 | 0.380083... | 1 reflection |
12 | 0.361141... | 120°, 3 reflections |
Method
This is the best known layout strategy for r(9) and r(10):
References
External links
- Weisstein, Eric W. "Disk Covering Problem". MathWorld.
- Weisstein, Eric W. "Disk Covering Problem." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/DiskCoveringProblem.html
- Finch, S. R. "Circular Coverage Constants." §2.2 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 484–489, 2003.
- Illustrations of circles covering circles