Jump to content

User:Vojtech.zrust/sandbox

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Vojtech.zrust (talk | contribs) at 09:20, 23 January 2014 (Stochastic simulation: original article pasted). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Stochastic simulation is a simulation that operates with variables that can change with certain probability. Stochastic means that particular factors (values) are variable or random.[1]

With stochastic model we create a projection which based on a set of random values. Outputs are recorded and the projection is repeated with a new set of random (variable) values. Previous steps are repeated until reasonable amout of data is gathered (thousandfold, millionfold, ..). In the end, the distribution of the outputs shows the most probable estimates as well as a frame of expectations (fringe values dividing those we still can expect from the ones we should not).[1]

Stochastic

Stochastic means "pertaining to conjecture"; from Gk. stokhastikos "able to guess, conjecturing"; from stokhazesthai "guess"; from stokhos "a guess, aim, target, mark". The sense of "randomly determined" was first recorded in 1934, from German Stochastik. [2]

Discrete, exact variants

In order to determine the next event in a stochastic simulation, the rates of all possible changes to the state of the model are computed, and then ordered in an array. Next, the cumulative sum of the array is taken, and the final cell contains the number R, where R is the total event rate. This cumulative array is now a discrete cumulative distribution, and can be used to choose the next event by picking a random number z~U(0,R) and choosing the first event, such that z is less than the rate associated with that event.

In historical order:

Direct and first reaction methods

Published by Dan Gillespie in 1977, and is a linear search on the cumulative array. See Gillespie algorithm.

Next reaction method

Published 2000. This is an improvement over the first reaction method where the unused reaction times are reused. To make the sampling of reactions more efficient, an indexed priority queue is used to store the reaction times. On the other hand, to make the recomputation of propensities more efficient, a dependency graph is used. This dependency graph tells which reaction propensities to update after a particular reaction has fired.

Optimised and sorting direct methods

Published 2004 and 2005. These methods sort the cumulative array to reduce the average search depth of the algorithm. The former runs a presimulation to estimate the firing frequency of reactions, whereas the latter sorts the cumulative array on-the-fly.

Logarithmic direct method

Published in 2006. This is a binary search on the cumulative array, thus reducing the worst-case time complexity of reaction sampling to O(log M).

Partial-propensity methods

Published in 2009, 2010, and 2011 (Ramaswamy 2009, 2010, 2011). Use factored-out, partial reaction propensities to reduce the computational cost to scale with the number of species in the network, rather than the (larger) number of reactions. Four variants exist:

  • PDM, the partial-propensity direct method. Has a computational cost that scales linearly with the number of different species in the reaction network, independent of the coupling class of the network (Ramaswamy 2009).
  • SPDM, the sorting partial-propensity direct method. Uses dynamic bubble sort to reduce the pre-factor of the computational cost in multi-scale reaction networks where the reaction rates span several orders of magnitude (Ramaswamy 2009).
  • PSSA-CR, the partial-propensity SSA with composition-rejection sampling. Reduces the computational cost to constant time (i.e., independent of network size) for weakly coupled networks (Ramaswamy 2010) using composition-rejection sampling (Slepoy 2008).
  • dPDM, the delay partial-propensity direct method. Extends PDM to reaction networks that incur time delays (Ramaswamy 2011) by providing a partial-propensity variant of the delay-SSA method (Bratsun 2005, Cai 2007).

The use of partial-propensity methods is limited to elementary chemical reactions, i.e., reactions with at most two different reactants. Every non-elementary chemical reaction can be equivalently decomposed into a set of elementary ones, at the expense of a linear (in the order of the reaction) increase in network size.

Continuous, approximate variants

τ leap and modified Poisson τ leap methods

First published in 2001; modified in 2005.


References

  1. ^ a b DLOUHÝ, M.; FÁBRY, J.; KUNCOVÁ, M.. Simulace pro ekonomy. Praha : VŠE, 2005.
  2. ^ stochastic. (n.d.). Online Etymology Dictionary. Retrieved January 23, 2014, from Dictionary.com website: http://dictionary.reference.com/browse/stochastic