Jump to content

Tautological consequence

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 80.101.154.204 (talk) at 15:24, 15 December 2013 (improved formatting in the Example section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In propositional logic, tautological consequence is a strict form of logical consequence[1] in which the tautologousness of a proposition is preserved from one line of a proof to the next. Not all logical consequences are tautological consequences. A proposition is said to be a tautological consequence of one or more other propositions (, , ..., ) in a proof with respect to some logical system if one is validly able to introduce the proposition onto a line of the proof within the rules of the system and in all cases when each of those one or more other propositions (, , ..., ) are true, the proposition also is true.

Another way to express this preservation of tautologousness is by using truth tables. A proposition is said to be a tautological consequence of one or more other propositions (, , ..., ) if and only if in every row of a joint truth table that assigns "T" to all propositions (, , ..., ) the truth table also assigns "T" to .

Example

Consider the following argument:

= "Socrates is a man."

= "All men are mortal."

= "Socrates is mortal."


The conclusion of this argument is a logical consequence of the premise because it is impossible for the premise to be true while the conclusion is false.

Now construct a joint truth table.

a b c ab c
T T T T T
T T F T F
T F T F T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F

Reviewing the truth table, it turns out the conclusion of the argument is not a tautological consequence of the premise. Not every row that assigns T to the conclusion also assigns T to every proposition in the premise. In particular, it is the second row that assigns T to "ab," but does not assign T to c.

Denotation and properties

It follows from the definition that if a proposition p is a contradiction then p tautologically implies every proposition, because there is no truth valuation that causes p to be true and so the definition of tautological implication is trivially satisfied. Similarly, if p is a tautology then p is tautologically implied by every proposition.

See also

Notes

  1. ^ Barwise and Etchemendy 1999, p. 110

References

  • Barwise, Jon, and John Etchemendy. Language, Proof and Logic. Stanford: CSLI (Center for the Study of Language and Information) Publications, 1999. Print.
  • Kleene, S. C. (1967) Mathematical Logic, reprinted 2002, Dover Publications, ISBN 0-486-42533-9.