Jump to content

Alliant Computer Systems

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Tildeleb (talk | contribs) at 22:55, 24 November 2013 (removed reference to Concentrix being stripped down 4.2, it was not. Originally based on 4.1c which was 99% the same as 4.2. Noted the major changes were multiprocessor support and new VM and I/O systems). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Alliant Computer Systems was a computer company that designed and manufactured parallel computing systems. Together with Pyramid Technology and Sequent Computer Systems, Alliant's machines pioneered the symmetric multiprocessing market. One of the more successful companies in the group, over 650 Alliant systems were produced over their lifetime.

History

1980s

Alliant was founded, as Dataflow Systems, in May 1982 by Ron Gruner, Craig Mundie and Rich McAndrew to produce machines for scientific and engineering users who needed smaller, less costly machines than offerings from Cray Computer and similar high-end vendors. Machines that addressed this market segment later became known as minisupercomputers.

Alliant's first machines were announced in 1985, starting with the FX series. The FX series consisted of a number Computational Elements, or CEs, which included a set of Weitek 1064/1065 FPU's and several custom designed support chips to implement a vector processor based upon the popular Motorola 68000 architecture. These were augmented by the Interactive Processors, IPs, which used Motorola 68012's and, subsequently Motorola 68020's and then Motorola 68030's) with 4MB of local RAM, connecting everything together using a crossbar switch to a globally shared cache. The shared cache and a special concurrency bus implemented low latency concurrency control that could be exploited automatically by high level language compilers to provide data-parallel processing among the CEs. Like many early multiprocessing systems, the FX series ran a version of 4.2 BSD Unix on the IPs and CEs, known as Concentrix which initially featured a new VM and IO sub-systems along with multiprocessor support. Subsequent releases added features such as the first striped Track File System (TFS) and support for real time scheduling.

Systems were numerated for the largest potential number of CEs inside, the FX/1, FX/4 and FX/8. Alliant machines were fairly small, the FX/1 was about the size of a large full-height PC, while the FX/8 was smaller than a VAX-11/780, about the size of a large photocopier. The speed of an FX/1 was about 2.5 MIPS (million instructions per second) and compared favorably to the 1 MIPS VAX-11/780. A fully populated eight CE FX/8, with eight times the aggregate MIPS, was in practice around five times faster than the FX/1 at solving problems that allowed a high degree of parallel computation (see Amdahl's law).

A second series of FX machines, introduced in early 1988, replaced the CE with new custom hardware known as the Advanced Computational Element (ACE). The Weitek FPUs were replaced by a floating point chipset made by Bipolar Integrated Technology and a redesigned vector processor with 32 64-bit vector elements, 8 64-bit scalar floating point registers, 8 32-bit integer registers, and 8 32-bit address registers. The new vector processor increased vector processing speed while reducing board space allowing the ACE to return to the 18x18 inch profile used by the other system boards in the main chassis. These were used in the FX/40, FX/80 and VFX machines.

1990s

In 1990, the FX/2800 series replaced the CE/ACEs and IPs with modules based on the Intel i860 RISC chip. The i860 was an early superscalar CPU that allowed the programmer access directly into the pipelines; with custom coding the 860 was a very fast system, making it perfect for supercomputer applications. In the new series the Super Computational Element (SCE) and Super Interactive Processor (SIP) both consisted of up to four i860s, up to seven of which could be interconnected on the crossbar. A fully expanded FX/2800 could support 28 i860's in total.

Also in 1990 Alliant purchased Raster Technologies, a provider of high-resolution graphics terminals and custom graphics cards for Sun Microsystems workstations. Their GX4000 product was a combination of PHIGS+ software and special graphical boards that could generate and display graphical vectors very fast. For 3D effects, a hardware Z-buffer was available. The Raster graphics technology was integrated with FX/40 and FX/80 machines to produce the VFX, Alliant's first fully integrated graphical minisupercomputer.

Alliant's final product series was the CAMPUS/800, a massively parallel machine based on units similar to the FX/2800 known as ClusterNodes and sharing a total of up to 4GB of unified memory. Each ClusterNode was connected to up to 32 others with an intra-ClusterNode switch, with a latency of 1us and 1.12GB/s bandwidth. An inter-ClusterNode switch based on HIPPI was also available, with a latency of 30us and 2.56GB/s bandwidth. The largest CAMPUS system created included 192 ClusterNodes in total, and provided 4.7 GFLOPS.

The CAMPUS/800 was first announced in 1991, but the company was hit by a series financial problems and went bankrupt in 1992. Various Alliant systems soldiered on in service for many years after that however, and were generally considered very reliable.

The Computer History Museum has examples of the FX/8 and FX/1 (from Convex Computer Corporation after Alliant's fall), but is seeking examples of FX/80 and FX/2800 configurations.