From Wikipedia, the free encyclopedia
In mathematics, the generalized polygamma function or balanced negapolygamma function is a function introduced by Olivier Espinosa Aldunate and Victor H. Moll .[ 1]
It generalizes the polygamma function to negative and fractional order, but remains equal to it for integer positive orders.
Definition
The generalized polygamma function is defined as follows:
ψ
(
z
,
q
)
=
ζ
′
(
z
+
1
,
q
)
+
(
ψ
(
−
z
)
+
γ
)
ζ
(
z
+
1
,
q
)
Γ
(
−
z
)
{\displaystyle \psi (z,q)={\frac {\zeta '(z+1,q)+(\psi (-z)+\gamma )\zeta (z+1,q)}{\Gamma (-z)}}\,}
or alternatively,
ψ
(
z
,
q
)
=
e
−
γ
z
∂
∂
z
(
e
γ
z
ζ
(
z
+
1
,
q
)
Γ
(
−
z
)
)
,
{\displaystyle \psi (z,q)=e^{-\gamma z}{\frac {\partial }{\partial z}}\left(e^{\gamma z}{\frac {\zeta (z+1,q)}{\Gamma (-z)}}\right),}
where
ψ
(
z
)
{\displaystyle \psi (z)}
is the Polygamma function and
ζ
(
z
,
q
)
,
{\displaystyle \zeta (z,q),}
is the Hurwitz zeta function .
The function is balanced, in that it satisfies the conditions
f
(
0
)
=
f
(
1
)
{\displaystyle f(0)=f(1)}
and
∫
0
1
f
(
x
)
d
x
=
0
{\displaystyle \int _{0}^{1}f(x)dx=0}
.
Relations
Several special functions can be expressed in terms of generalized polygamma function.
ψ
(
x
)
=
ψ
(
0
,
x
)
{\displaystyle \psi (x)=\psi (0,x)\,}
ψ
(
n
)
(
x
)
=
ψ
(
n
,
x
)
(
n
∈
N
)
{\displaystyle \psi ^{(n)}(x)=\psi (n,x)\,\,\,(n\in \mathbb {N} )}
Γ
(
x
)
=
e
ψ
(
−
1
,
x
)
+
1
2
ln
(
2
π
)
{\displaystyle \Gamma (x)=e^{\psi (-1,x)+{\frac {1}{2}}\ln(2\pi )}\,\,\,}
ζ
(
z
,
q
)
=
Γ
(
1
−
z
)
(
2
−
z
(
ψ
(
z
−
1
,
q
2
+
1
2
)
+
ψ
(
z
−
1
,
q
2
)
)
−
ψ
(
z
−
1
,
q
)
)
ln
(
2
)
{\displaystyle \zeta (z,q)={\frac {\Gamma (1-z)\left(2^{-z}\left(\psi \left(z-1,{\frac {q}{2}}+{\frac {1}{2}}\right)+\psi \left(z-1,{\frac {q}{2}}\right)\right)-\psi (z-1,q)\right)}{\ln(2)}}}
ζ
′
(
−
1
,
x
)
=
ψ
(
−
2
,
x
)
+
x
2
2
−
x
2
+
1
12
{\displaystyle \zeta '(-1,x)=\psi (-2,x)+{\frac {x^{2}}{2}}-{\frac {x}{2}}+{\frac {1}{12}}}
B
n
(
q
)
=
−
Γ
(
n
+
1
)
(
2
n
−
1
(
ψ
(
−
n
,
q
2
+
1
2
)
+
ψ
(
−
n
,
q
2
)
)
−
ψ
(
−
n
,
q
)
)
ln
(
2
)
{\displaystyle B_{n}(q)=-{\frac {\Gamma (n+1)\left(2^{n-1}\left(\psi \left(-n,{\frac {q}{2}}+{\frac {1}{2}}\right)+\psi \left(-n,{\frac {q}{2}}\right)\right)-\psi (-n,q)\right)}{\ln(2)}}}
where
B
n
(
q
)
{\displaystyle B_{n}(q)}
are Bernoulli polynomials
K
(
z
)
=
A
e
ψ
(
−
2
,
z
)
+
z
2
−
z
2
{\displaystyle K(z)=Ae^{\psi (-2,z)+{\frac {z^{2}-z}{2}}}}
where K (z ) is K-function and A is the Glaisher constant .
Special values
The balanced polygamma function can be expressed in a closed form at certain points:
ψ
(
−
2
)
(
1
4
)
=
1
8
ln
(
2
π
)
+
9
8
ln
A
+
G
4
π
,
{\displaystyle \psi ^{(-2)}\left({\frac {1}{4}}\right)={\frac {1}{8}}\ln(2\pi )+{\frac {9}{8}}\ln A+{\frac {G}{4\pi }},}
where
A
{\displaystyle A}
is the Glaisher constant and
G
{\displaystyle G}
is the Catalan constant .
ψ
(
−
2
)
(
1
2
)
=
1
4
ln
π
+
3
2
ln
A
+
5
24
ln
2
{\displaystyle \psi ^{(-2)}\left({\frac {1}{2}}\right)={\frac {1}{4}}\ln \pi +{\frac {3}{2}}\ln A+{\frac {5}{24}}\ln 2}
ψ
(
−
2
)
(
1
)
=
1
2
ln
(
2
π
)
{\displaystyle \psi ^{(-2)}(1)={\frac {1}{2}}\ln(2\pi )}
ψ
(
−
2
)
(
2
)
=
ln
(
2
π
)
−
1
{\displaystyle \psi ^{(-2)}(2)=\ln(2\pi )-1}
ψ
(
−
3
)
(
1
2
)
=
1
16
ln
(
2
π
)
+
1
2
ln
A
+
7
ζ
(
3
)
32
π
2
{\displaystyle \psi ^{(-3)}\left({\frac {1}{2}}\right)={\frac {1}{16}}\ln(2\pi )+{\frac {1}{2}}\ln A+{\frac {7\,\zeta (3)}{32\,\pi ^{2}}}}
ψ
(
−
3
)
(
1
)
=
1
4
ln
(
2
π
)
+
ln
A
{\displaystyle \psi ^{(-3)}(1)={\frac {1}{4}}\ln(2\pi )+\ln A}
ψ
(
−
3
)
(
2
)
=
ln
(
2
π
)
+
2
ln
A
−
3
4
{\displaystyle \psi ^{(-3)}(2)=\ln(2\pi )+2\ln A-{\frac {3}{4}}}
References