Jump to content

Talk:Ryll-Nardzewski fixed-point theorem

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Chinedine (talk | contribs) at 11:57, 11 June 2006. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
if E is a normed vector space and K is nonempty convex subset of E, which is closed for the weak topology, then every group of affine isometries of K has at least one fixed point.

This statement is clearly false: take E=K=R2, and take the group generated by the translation by 1 in x-direction, which doesn't have fixed points. So at least we need K to be weakly compact. Even with that change, I still don't see how this theorem generalizes the Brouwer fixed point theorem (as stated in Fixed point theorems in infinite-dimensional spaces), which talks about general continuous maps and not just about affine maps. I would also be much more comfortable with assuming a Banach space E rather than just a normed space in this theorem. AxelBoldt 04:04, 11 June 2006 (UTC)[reply]

Also, our article on infinite-dimensional fixed point theorems states that the Ryll-Nardzewsk theorem is from 1967, which accords with the reference I just added to the article, but does not match the 1964 Bourbaki reference given in the article. AxelBoldt 04:17, 11 June 2006 (UTC)[reply]

Oh, the "closed" should of course be replaced by compact. I remember seeing another so-called Ryll-Nardzewski theorem in Fixed point theory by Andrzej Granas, James Dugundji, which was an actual generalisation. I'll try to have a look when I have time. By the way, I was wondering : how can you have an articlemarked as a stubChinedine 11:56, 11 June 2006 (UTC)[reply]