Jump to content

Prim's algorithm

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Flowi (talk | contribs) at 15:15, 17 October 2013 (Clarified the issue with disconnected graphs...previously it read as if Prim could not be used such graphs at all.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Template:Graph search algorithm In computer science, Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm was developed in 1930 by Czech mathematician Vojtěch Jarník and later independently by computer scientist Robert C. Prim in 1957 and rediscovered by Edsger Dijkstra in 1959. Therefore it is also sometimes called the DJP algorithm, the Jarník algorithm, or the Prim–Jarník algorithm.

Other algorithms for this problem include Kruskal's algorithm and Borůvka's algorithm. These algorithms find the minimum spanning forest in a possibly disconnected graph. By running Prim's algorithm for each connected component of the graph, it can also be used to find the minimum spanning forest.

Description

Informal

  • Create a tree containing a single vertex, chosen arbitrarily from the graph
  • Create a set containing all the edges in the graph
  • Loop until every edge in the set connects two vertices in the tree
    • Remove from the set an edge with minimum weight that connects a vertex in the tree with a vertex not in the tree
    • Add that edge to the tree

Technical

Prim's algorithm has many applications, such as in the generation of this maze, which applies Prim's algorithm to a randomly weighted grid graph.

If a graph is empty then we are done immediately. Thus, we assume otherwise.

The algorithm starts with a tree consisting of a single vertex, and continuously increases its size one edge at a time, until it spans all vertices.

  • Input: A non-empty connected weighted graph with vertices V and edges E (the weights can be negative).
  • Initialize: Vnew = {x}, where x is an arbitrary node (starting point) from V, Enew = {}
  • Repeat until Vnew = V:
    • Choose an edge {u, v} with minimal weight such that u is in Vnew and v is not (if there are multiple edges with the same weight, any of them may be picked)
    • Add v to Vnew, and {u, v} to Enew
  • Output: Vnew and Enew describe a minimal spanning tree

Time complexity

Minimum edge weight data structure Time complexity (total)
adjacency matrix, searching O(|V|2)
binary heap and adjacency list O((|V| + |E|) log |V|) = O(|E| log |V|)
Fibonacci heap and adjacency list O(|E| + |V| log |V|)

A simple implementation using an adjacency matrix graph representation and searching an array of weights to find the minimum weight edge to add requires O(|V|2) running time. Using a simple binary heap data structure and an adjacency list representation, Prim's algorithm can be shown to run in time O(|E| log |V|) where |E| is the number of edges and |V| is the number of vertices. Using a more sophisticated Fibonacci heap, this can be brought down to O(|E| + |V| log |V|), which is asymptotically faster when the graph is dense enough that |E| is ω(|V|).

Proof of correctness

Let P be a connected, weighted graph. At every iteration of Prim's algorithm, an edge must be found that connects a vertex in a subgraph to a vertex outside the subgraph. Since P is connected, there will always be a path to every vertex. The output Y of Prim's algorithm is a tree, because the edge and vertex added to tree Y are connected. Let Y1 be a minimum spanning tree of graph P. If Y1=Y then Y is a minimum spanning tree. Otherwise, let e be the first edge added during the construction of tree Y that is not in tree Y1, and V be the set of vertices connected by the edges added before edge e. Then one endpoint of edge e is in set V and the other is not. Since tree Y1 is a spanning tree of graph P, there is a path in tree Y1 joining the two endpoints. As one travels along the path, one must encounter an edge f joining a vertex in set V to one that is not in set V. Now, at the iteration when edge e was added to tree Y, edge f could also have been added and it would be added instead of edge e if its weight was less than e, and since edge f was not added, we conclude that

Let tree Y2 be the graph obtained by removing edge f from and adding edge e to tree Y1. It is easy to show that tree Y2 is connected, has the same number of edges as tree Y1, and the total weights of its edges is not larger than that of tree Y1, therefore it is also a minimum spanning tree of graph P and it contains edge e and all the edges added before it during the construction of set V. Repeat the steps above and we will eventually obtain a minimum spanning tree of graph P that is identical to tree Y. This shows Y is a minimum spanning tree.

References