Jump to content

Standard part function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Tkuvho (talk | contribs) at 09:08, 3 October 2013. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In non-standard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every such hyperreal, the unique real infinitely close to it. As such, it is a mathematical implementation of the historical concept of adequality introduced by Pierre de Fermat.[1] It can also be thought of as a mathematical implementation of Leibniz's Transcendental Law of Homogeneity. The standard part function was first defined by Abraham Robinson[citation needed] as a key ingredient in defining the concepts of the calculus, such as the derivative and the integral, in non-standard analysis. The latter theory is a rigorous formalisation of calculations with infinitesimals. The standard part of x is sometimes referred to as its shadow.

Definition

The standard part function associates to every finite hyperreal, the unique real number infinitely close to it. The bottom line represents the "thin" real continuum. The line at top represents the "thick" hyperreal continuum. The "infinitesimal microscope" is used to view an infinitesimal neighborhood of 0.

Nonstandard analysis deals primarily with the pair , where the hyperreals are an extension of the reals , and contain infinitesimals, in addition to the reals. In the hyperreal line every real number has a collection of numbers (called a monad, or halo) of hyperreals infinitely close to it. The standard part function associates to a finite hyperreal x, the unique standard real number x0 which is infinitely close to it. The relationship is expressed symbolically by writing

The standard part of any infinitesimal is 0. Thus if N is an infinite hypernatural, then 1/N is infinitesimal, and st(1/N) = 0.

If a hyperreal is represented by a Cauchy sequence in the ultrapower construction, then

Not internal

The standard part function "st" is not defined by an internal set. There are several ways of explaining this. Perhaps the simplest is that its domain L, which is the collection of limited (i.e. finite) hyperreals, is not an internal set. Namely, since L is bounded (by any infinite hypernatural, for instance), L would have to have a least upper bound if L were internal, but L doesn't have a least upper bound. Alternatively, the range of "st" is which is not internal; in fact every internal subset of is necessarily finite, see (Goldblatt, 1998).

Applications

The standard part function is used to define the derivative of a function f. If f is a real function, and h is infinitesimal, and if f′(x) exists, then

Notes

  1. ^ Karin Usadi Katz and Mikhail G. Katz (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. Foundations of Science. doi:10.1007/s10699-011-9223-1 [1] See arxiv. The authors refer to the Fermat-Robinson standard part.

See also

References