Jump to content

M/D/c queue

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Gareth Jones (talk | contribs) at 13:03, 14 June 2013 (brackets to improve clarity). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

<!DOCTYPE html>

<html prefix="mw: http://mediawiki.org/rdf/"><head prefix="schema: http://schema.org/"><meta charset="UTF-8"><meta property="mw:articleNamespace" content="0"><meta property="schema:CreativeWork/version" content="559856801"><meta property="schema:CreativeWork/version/parent" content="559856706"><meta property="schema:CreativeWork/dateModified" content="2013-06-14T10:51:56.000Z"><meta property="schema:CreativeWork/contributor/username" content="//en.wikipedia.org/wiki/User:Gareth Jones"><meta property="schema:CreativeWork/contributor" content="//en.wikipedia.org/wiki/Special:UserById/313335"><meta property="mw:revisionSHA1" content="19239dbadc887c8b075ede25da4eefafd9f1b1dc"><meta property="schema:CreativeWork/comment" content="link m/d/1 queue in lead"><title>M/D/c queue</title><base href="/wiki/M/D/c_queue"></head><body>

In <a rel="mw:WikiLink" href="../../Queueing_theory" data-parsoid='{"a":{"href":"../../Queueing_theory"},"sa":{"href":"queueing theory"},"stx":"simple","dsr":[3,22,2,2]}'>queueing theory</a>, a discipline within the mathematical <a rel="mw:WikiLink" href="../../Probability_theory" data-parsoid='{"a":{"href":"../../Probability_theory"},"sa":{"href":"probability theory"},"stx":"piped","dsr":[61,105,21,2]}'>theory of probability</a>, an M/D/c queue represents the queue length in a system having c servers, where arrivals are determined by a <a rel="mw:WikiLink" href="../../Poisson_process" data-parsoid='{"a":{"href":"../../Poisson_process"},"sa":{"href":"Poisson process"},"stx":"simple","dsr":[225,244,2,2]}'>Poisson process</a> and job service times are fixed (deterministic). The model name is written in <a rel="mw:WikiLink" href="../../Kendall's_notation" data-parsoid='{"a":{"href":"../../Kendall's_notation"},"sa":{"href":"Kendall's notation"},"stx":"simple","dsr":[323,345,2,2]}'>Kendall's notation</a>.<span about="#mwt4" class="reference" data-mw='{"name":"ref","body":{"html":"<span class=\"citation journal\" data-parsoid=\"{&quot;src&quot;:&quot;Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1214/aoms/1177728975, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1214/aoms/1177728975 instead.&quot;,&quot;dsr&quot;:[351,387,null,null]}\" about=\"#mwt7\" typeof=\"mw:Transclusion\" data-mw=\"{&quot;target&quot;:{&quot;wt&quot;:&quot;cite doi&quot;,&quot;href&quot;:&quot;../../Template:Cite_doi&quot;},&quot;params&quot;:{&quot;1&quot;:{&quot;wt&quot;:&quot;10.1214/aoms/1177728975&quot;}}}\"><a rel=\"mw:WikiLink\" href=\"../../David_George_Kendall\" data-parsoid=\"{&quot;a&quot;:{&quot;href&quot;:&quot;../../David_George_Kendall&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;David George Kendall&quot;},&quot;stx&quot;:&quot;piped&quot;}\">Kendall, D. G.</a> (1953). \"Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain\". The Annals of Mathematical Statistics 24 (3): 338. <a rel=\"mw:WikiLink\" href=\"../../Digital_object_identifier\" data-parsoid=\"{&quot;a&quot;:{&quot;href&quot;:&quot;../../Digital_object_identifier&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;Digital object identifier&quot;},&quot;stx&quot;:&quot;piped&quot;}\">doi</a>:<a rel=\"mw:ExtLink\" href=\"http://dx.doi.org/10.1214%2Faoms%2F1177728975\" data-parsoid=\"{&quot;targetOff&quot;:342,&quot;a&quot;:{&quot;href&quot;:&quot;http://dx.doi.org/10.1214%2Faoms%2F1177728975&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;e model name is written in [[Kendall's notati&quot;}}\">10.1214/aoms/1177728975</a>. <a rel=\"mw:WikiLink\" href=\"../../JSTOR\" data-parsoid=\"{&quot;a&quot;:{&quot;href&quot;:&quot;../../JSTOR&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;JSTOR&quot;},&quot;stx&quot;:&quot;piped&quot;}\">JSTOR</a>&nbsp;<a rel=\"mw:ExtLink\" href=\"http://www.jstor.org/stable/2236285\" data-parsoid=\"{&quot;targetOff&quot;:426,&quot;a&quot;:{&quot;href&quot;:&quot;http://www.jstor.org/stable/2236285&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;ef> Agner Krarup Erlang first p&quot;}}\">2236285</a>.&nbsp; <a rel=\"mw:ExtLink\" href=\"//en.wikipedia.org/w/index.php?title=Template:Cite_doi/10.1214.2Faoms.2F1177728975&amp;action=edit&amp;editintro=Template:Cite_doi/editintro2\" data-parsoid=\"{&quot;targetOff&quot;:1215,&quot;a&quot;:{&quot;href&quot;:&quot;//en.wikipedia.org/w/index.php?title=Template:Cite_doi/10.1214.2Faoms.2F1177728975&amp;action=edit&amp;editintro=Template:Cite_doi/editintro2&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;urrently in service. \\n\\n* Arrivals occur at rate λ according to a Poisson process and move the process from state ''i'' to ''i''&amp;n&quot;}}\">edit</a>"},"attrs":{}}' id="cite_ref-1-0" rel="dc:references" typeof="mw:Extension/ref" data-parsoid='{"src":"[1]","dsr":[346,393,5,6]}'><a href="#cite_note-1">[1]</a> <a rel="mw:WikiLink" href="../../Agner_Krarup_Erlang" data-parsoid='{"a":{"href":"../../Agner_Krarup_Erlang"},"sa":{"href":"Agner Krarup Erlang"},"stx":"simple","dsr":[394,417,2,2]}'>Agner Krarup Erlang</a> first published on this model in 1909, starting the subject of <a rel="mw:WikiLink" href="../../Queueing_theory" data-parsoid='{"a":{"href":"../../Queueing_theory"},"sa":{"href":"queueing theory"},"stx":"simple","dsr":[481,500,2,2]}'>queueing theory</a>.<span about="#mwt5" class="reference" data-mw='{"name":"ref","body":{"html":"<span class=\"citation journal\" data-parsoid=\"{&quot;src&quot;:&quot;Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/s11134-009-9147-4, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/s11134-009-9147-4 instead.&quot;,&quot;dsr&quot;:[506,544,null,null]}\" about=\"#mwt8\" typeof=\"mw:Transclusion\" data-mw=\"{&quot;target&quot;:{&quot;wt&quot;:&quot;cite doi&quot;,&quot;href&quot;:&quot;../../Template:Cite_doi&quot;},&quot;params&quot;:{&quot;1&quot;:{&quot;wt&quot;:&quot;10.1007/s11134-009-9147-4&quot;}}}\"><a rel=\"mw:WikiLink\" href=\"../../John_Kingman\" data-parsoid=\"{&quot;a&quot;:{&quot;href&quot;:&quot;../../John_Kingman&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;John Kingman&quot;},&quot;stx&quot;:&quot;piped&quot;}\">Kingman, J. F. C.</a> (2009). \"The first Erlang century—and the next\". Queueing Systems 63: 3–4. <a rel=\"mw:WikiLink\" href=\"../../Digital_object_identifier\" data-parsoid=\"{&quot;a&quot;:{&quot;href&quot;:&quot;../../Digital_object_identifier&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;Digital object identifier&quot;},&quot;stx&quot;:&quot;piped&quot;}\">doi</a>:<a rel=\"mw:ExtLink\" href=\"http://dx.doi.org/10.1007%2Fs11134-009-9147-4\" data-parsoid=\"{&quot;targetOff&quot;:233,&quot;a&quot;:{&quot;href&quot;:&quot;http://dx.doi.org/10.1007%2Fs11134-009-9147-4&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;s, where arrivals are determined by a [[Poiss&quot;}}\">10.1007/s11134-009-9147-4</a>.&nbsp; <a rel=\"mw:ExtLink\" href=\"//en.wikipedia.org/w/index.php?title=Template:Cite_doi/10.1007.2Fs11134-009-9147-4&amp;action=edit&amp;editintro=Template:Cite_doi/editintro2\" data-parsoid=\"{&quot;targetOff&quot;:932,&quot;a&quot;:{&quot;href&quot;:&quot;//en.wikipedia.org/w/index.php?title=Template:Cite_doi/10.1007.2Fs11134-009-9147-4&amp;action=edit&amp;editintro=Template:Cite_doi/editintro2&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;ef> The model is an extension of the M/D/1 queue which has only a single server.\\n\\n==Model definition==\\n\\nAn M/D/''c'' queue is a s&quot;}}\">edit</a>"},"attrs":{}}' id="cite_ref-2-0" rel="dc:references" typeof="mw:Extension/ref" data-parsoid='{"src":"[2]","dsr":[501,550,5,6]}'><a href="#cite_note-2">[2]</a><span about="#mwt6" class="reference" data-mw='{"name":"ref","body":{"html":"<span class=\"citation journal\" data-parsoid=\"{&quot;src&quot;:&quot;"The theory of probabilities and telephone conversations" (PDF). Nyt Tidsskrift for Matematik B. 20: 33–39. 1909.&quot;,&quot;dsr&quot;:[555,795,null,null]}\" about=\"#mwt9\" typeof=\"mw:Transclusion\" data-mw=\"{&quot;target&quot;:{&quot;wt&quot;:&quot;cite journal &quot;,&quot;href&quot;:&quot;../../Template:Cite_journal&quot;},&quot;params&quot;:{&quot; title &quot;:{&quot;wt&quot;:&quot;The theory of probabilities and telephone conversations &quot;},&quot; journal &quot;:{&quot;wt&quot;:&quot;Nyt Tidsskrift for Matematik B &quot;},&quot; volume &quot;:{&quot;wt&quot;:&quot;20 &quot;},&quot; pages &quot;:{&quot;wt&quot;:&quot;33–39 &quot;},&quot; url &quot;:{&quot;wt&quot;:&quot;http://oldwww.com.dtu.dk/teletraffic/erlangbook/pps131-137.pdf &quot;},&quot; year &quot;:{&quot;wt&quot;:&quot;1909&quot;}}}\"><a rel=\"mw:ExtLink\" href=\"http://oldwww.com.dtu.dk/teletraffic/erlangbook/pps131-137.pdf\" data-parsoid=\"{&quot;targetOff&quot;:95,&quot;a&quot;:{&quot;href&quot;:&quot;http://oldwww.com.dtu.dk/teletraffic/erlangbook/pps131-137.pdf&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;line within the mathematical [[probability theory|theory of pr&quot;}}\">\"The theory of probabilities and telephone conversations\"</a>. Nyt Tidsskrift for Matematik B 20: 33–39. 1909.&nbsp;"},"attrs":{}}' id="cite_ref-3-0" rel="dc:references" typeof="mw:Extension/ref" data-parsoid='{"src":"[3]","dsr":[550,801,5,6]}'><a href="#cite_note-3">[3]</a> The model is an extension of the <a rel="mw:WikiLink" href="../../M/D/1_queue" data-parsoid='{"a":{"href":"../../M/D/1_queue"},"sa":{"href":"M/D/1 queue"},"stx":"simple","dsr":[835,850,2,2]}'>M/D/1 queue</a> which has only a single server.

Model definition

An M/D/c queue is a stochastic process whose <a rel="mw:WikiLink" href="../../State_space" data-parsoid='{"a":{"href":"../../State_space"},"sa":{"href":"state space"},"stx":"simple","dsr":[955,970,2,2]}'>state space</a> is the set {0,1,2,3,...} where the value corresponds to the number of customers in the system, including any currently in service.

  • Arrivals occur at rate λ according to a <a rel="mw:WikiLink" href="../../Poisson_process" data-parsoid='{"a":{"href":"../../Poisson_process"},"sa":{"href":"Poisson process"},"stx":"simple","dsr":[1146,1165,2,2]}'>Poisson process</a> and move the process from state i to i + 1.
  • Service times are deterministic time D (serving at rate μ = 1/D).
  • c servers serve customers from the front of the queue, according to a <a rel="mw:WikiLink" href="../../First-come,_first-served" data-parsoid='{"a":{"href":"../../First-come,_first-served"},"sa":{"href":"first-come, first-served"},"stx":"simple","dsr":[1394,1422,2,2]}'>first-come, first-served</a> discipline. When the service is complete the customer leaves the queue and the number of customers in the system reduces by one.
  • The buffer is of infinite size, so there is no limit on the number of customers it can contain.

Waiting time distribution

Erlang showed that when ρ = λ D/c < 1, the waiting time distribution has distribution F(y) given by<span about="#mwt11" class="reference" data-mw='{"name":"ref","body":{"html":"<span class=\"citation journal\" data-parsoid=\"{&quot;src&quot;:&quot;Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/S0167-6377(01)00108-0, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/S0167-6377(01)00108-0 instead.&quot;,&quot;dsr&quot;:[1844,1886,null,null]}\" about=\"#mwt12\" typeof=\"mw:Transclusion\" data-mw=\"{&quot;target&quot;:{&quot;wt&quot;:&quot;cite doi&quot;,&quot;href&quot;:&quot;../../Template:Cite_doi&quot;},&quot;params&quot;:{&quot;1&quot;:{&quot;wt&quot;:&quot;10.1016/S0167-6377(01)00108-0&quot;}}}\">Franx, G. J. (2001). \"A simple solution for the M/D/c waiting time distribution\". Operations Research Letters 29 (5): 221–229. <a rel=\"mw:WikiLink\" href=\"../../Digital_object_identifier\" data-parsoid=\"{&quot;a&quot;:{&quot;href&quot;:&quot;../../Digital_object_identifier&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;Digital object identifier&quot;},&quot;stx&quot;:&quot;piped&quot;}\">doi</a>:<a rel=\"mw:ExtLink\" href=\"http://dx.doi.org/10.1016%2FS0167-6377%2801%2900108-0\" data-parsoid=\"{&quot;targetOff&quot;:258,&quot;a&quot;:{&quot;href&quot;:&quot;http://dx.doi.org/10.1016%2FS0167-6377%2801%2900108-0&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot; are determined by a Poisson process and job serv&quot;}}\">10.1016/S0167-6377(01)00108-0</a>.&nbsp; <a rel=\"mw:ExtLink\" href=\"//en.wikipedia.org/w/index.php?title=Template:Cite_doi/10.1016.2FS0167-6377.2801.2900108-0&amp;action=edit&amp;editintro=Template:Cite_doi/editintro2\" data-parsoid=\"{&quot;targetOff&quot;:1010,&quot;a&quot;:{&quot;href&quot;:&quot;//en.wikipedia.org/w/index.php?title=Template:Cite_doi/10.1016.2FS0167-6377.2801.2900108-0&amp;action=edit&amp;editintro=Template:Cite_doi/editintro2&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;single server.\\n\\n==Model definition==\\n\\nAn M/D/''c'' queue is a stochastic process whose state space is the set {0,1,2,3,...} where the val&quot;}}\">edit</a>"},"attrs":{"name":"franx"}}' id="cite_ref-franx-4-0" rel="dc:references" typeof="mw:Extension/ref" data-parsoid='{"src":"[4]","dsr":[1826,1892,18,6]}'><a href="#cite_note-franx-4">[4]</a>

<img class="tex" alt="F(y) = \int_0^\infty F(x+y-D)\frac{\lambda^c x^{c-1}}{(c-1)!} e^{-\lambda x} \text{d} x, \quad y \geq 0 \quad c \in \mathbb N." src="/media/math/d/0/f/d0f83f237a48a605b1eca5df7a08fd3b.png" typeof="mw:Extension/math" data-parsoid='{"src":"Failed to parse (syntax error): {\displaystyle F(y) = \\int_0^\\infty F(x+y-D)\\frac{\\lambda^c x^{c-1}}{(c-1)!} e^{-\\lambda x} \\text{d} x, \\quad y \\geq 0 \\quad c \\in \\mathbb N.} ","dsr":[1896,2035,null,null]}' data-mw='{"name":"math","attrs":{},"body":{"extsrc":"F(y) = \\int_0^\\infty F(x+y-D)\\frac{\\lambda^c x^{c-1}}{(c-1)!} e^{-\\lambda x} \\text{d} x, \\quad y \\geq 0 \\quad c \\in \\mathbb N."}}' about="mwt14">

Crommelin showed that, writing Pn for the stationary probability of a system with n or fewer customers, <span about="#mwt16" class="reference" data-mw='{"name":"ref","body":{"html":"<span class=\"citation journal\" data-parsoid=\"{&quot;src&quot;:&quot;Crommelin, C.D. (1932). "Delay probability formulas when the holding times are constant". P.O. Electr. Engr. J. 25: 41–50.&quot;,&quot;dsr&quot;:[2169,2364,null,null]}\" about=\"#mwt17\" typeof=\"mw:Transclusion\" data-mw=\"{&quot;target&quot;:{&quot;wt&quot;:&quot;cite journal &quot;,&quot;href&quot;:&quot;../../Template:Cite_journal&quot;},&quot;params&quot;:{&quot; first &quot;:{&quot;wt&quot;:&quot;C.D. &quot;},&quot; last &quot;:{&quot;wt&quot;:&quot;Crommelin &quot;},&quot; title &quot;:{&quot;wt&quot;:&quot;Delay probability formulas when the holding times are constant &quot;},&quot; journal &quot;:{&quot;wt&quot;:&quot;P.O. Electr. Engr. J.&quot;},&quot; volume &quot;:{&quot;wt&quot;:&quot;25&quot;},&quot; year&quot;:{&quot;wt&quot;:&quot;1932&quot;},&quot; pages&quot;:{&quot;wt&quot;:&quot;41–50&quot;}}}\">Crommelin, C.D. (1932). \"Delay probability formulas when the holding times are constant\". P.O. Electr. Engr. J. 25: 41–50.&nbsp;"},"attrs":{}}' id="cite_ref-5-0" rel="dc:references" typeof="mw:Extension/ref" data-parsoid='{"src":"[5]","dsr":[2164,2370,5,6]}'><a href="#cite_note-5">[5]</a>

<img class="tex" alt="\mathbb P(W \leq x) = \sum_{n=0}^{c-1} P_n \sum_{k=1}^m \frac{(-\lambda(x-kD))^{(k+1)c-1-n}}{((K+1)c-1-n)!}e^{\lambda(x-kD)}, \quad mD \leq x <(m+1)D." src="/media/math/4/7/f/47f7699996b1ee30a74a04950eab1ebe.png" typeof="mw:Extension/math" data-parsoid='{"src":"Failed to parse (syntax error): {\displaystyle \\mathbb P(W \\leq x) = \\sum_{n=0}^{c-1} P_n \\sum_{k=1}^m \\frac{(-\\lambda(x-kD))^{(k+1)c-1-n}}{((K+1)c-1-n)!}e^{\\lambda(x-kD)}, \\quad mD \\leq x <(m+1)D.} ","dsr":[2374,2537,null,null]}' data-mw='{"name":"math","attrs":{},"body":{"extsrc":"\\mathbb P(W \\leq x) = \\sum_{n=0}^{c-1} P_n \\sum_{k=1}^m \\frac{(-\\lambda(x-kD))^{(k+1)c-1-n}}{((K+1)c-1-n)!}e^{\\lambda(x-kD)}, \\quad mD \\leq x <(m+1)D."}}' about="mwt19">

References

<div class="reflist " style=" list-style-type: decimal;" data-parsoid='{"src":"

  1. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1214/aoms/1177728975, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1214/aoms/1177728975 instead.
  2. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/s11134-009-9147-4, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/s11134-009-9147-4 instead.
  3. ^ "The theory of probabilities and telephone conversations" (PDF). Nyt Tidsskrift for Matematik B. 20: 33–39. 1909.
  4. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/S0167-6377(01)00108-0, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/S0167-6377(01)00108-0 instead.
  5. ^ Crommelin, C.D. (1932). "Delay probability formulas when the holding times are constant". P.O. Electr. Engr. J. 25: 41–50.

","dsr":[2554,2600,null,null]}' about="mwt21" typeof="mw:Transclusion" data-mw='{"target":{"wt":"Reflist","href":"../../Template:Reflist"},"params":{}}'>

  1. <a href="#cite_ref-1-0">↑</a> <span class="citation journal" data-parsoid='{"src":"Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1214/aoms/1177728975, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1214/aoms/1177728975 instead.","dsr":[351,387,null,null]}' about="#mwt7" typeof="mw:Transclusion" data-mw='{"target":{"wt":"cite doi","href":"../../Template:Cite_doi"},"params":{"1":{"wt":"10.1214/aoms/1177728975"}}}'><a rel="mw:WikiLink" href="../../David_George_Kendall" data-parsoid='{"a":{"href":"../../David_George_Kendall"},"sa":{"href":"David George Kendall"},"stx":"piped"}'>Kendall, D. G.</a> (1953). "Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain". The Annals of Mathematical Statistics 24 (3): 338. <a rel="mw:WikiLink" href="../../Digital_object_identifier" data-parsoid='{"a":{"href":"../../Digital_object_identifier"},"sa":{"href":"Digital object identifier"},"stx":"piped"}'>doi</a>:<a rel="mw:ExtLink" href="http://dx.doi.org/10.1214%2Faoms%2F1177728975" data-parsoid='{"targetOff":342,"a":{"href":"http://dx.doi.org/10.1214%2Faoms%2F1177728975"},"sa":{"href":"e model name is written in [[Kendall's notati"}}'>10.1214/aoms/1177728975</a>. <a rel="mw:WikiLink" href="../../JSTOR" data-parsoid='{"a":{"href":"../../JSTOR"},"sa":{"href":"JSTOR"},"stx":"piped"}'>JSTOR</a> <a rel="mw:ExtLink" href="http://www.jstor.org/stable/2236285" data-parsoid='{"targetOff":426,"a":{"href":"http://www.jstor.org/stable/2236285"},"sa":{"href":"ef> Agner Krarup Erlang first p"}}'>2236285</a>.  <a rel="mw:ExtLink" href="/w/index.php?title=Template:Cite_doi/10.1214.2Faoms.2F1177728975&action=edit&editintro=Template:Cite_doi/editintro2" data-parsoid='{"targetOff":1215,"a":{"href":"//en.wikipedia.org/w/index.php?title=Template:Cite_doi/10.1214.2Faoms.2F1177728975&action=edit&editintro=Template:Cite_doi/editintro2"},"sa":{"href":"s]] and move the process from state ''i'' to ''i''&nbsp;+&nbsp;1.\n* Service times are deterministic time ''D'' (serving at rate ''μ''"}}'>edit</a>
  2. <a href="#cite_ref-2-0">↑</a> <span class="citation journal" data-parsoid='{"src":"Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/s11134-009-9147-4, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/s11134-009-9147-4 instead.","dsr":[506,544,null,null]}' about="#mwt8" typeof="mw:Transclusion" data-mw='{"target":{"wt":"cite doi","href":"../../Template:Cite_doi"},"params":{"1":{"wt":"10.1007/s11134-009-9147-4"}}}'><a rel="mw:WikiLink" href="../../John_Kingman" data-parsoid='{"a":{"href":"../../John_Kingman"},"sa":{"href":"John Kingman"},"stx":"piped"}'>Kingman, J. F. C.</a> (2009). "The first Erlang century—and the next". Queueing Systems 63: 3–4. <a rel="mw:WikiLink" href="../../Digital_object_identifier" data-parsoid='{"a":{"href":"../../Digital_object_identifier"},"sa":{"href":"Digital object identifier"},"stx":"piped"}'>doi</a>:<a rel="mw:ExtLink" href="http://dx.doi.org/10.1007%2Fs11134-009-9147-4" data-parsoid='{"targetOff":233,"a":{"href":"http://dx.doi.org/10.1007%2Fs11134-009-9147-4"},"sa":{"href":"s, where arrivals are determined by a [[Poiss"}}'>10.1007/s11134-009-9147-4</a>.  <a rel="mw:ExtLink" href="/w/index.php?title=Template:Cite_doi/10.1007.2Fs11134-009-9147-4&action=edit&editintro=Template:Cite_doi/editintro2" data-parsoid='{"targetOff":932,"a":{"href":"//en.wikipedia.org/w/index.php?title=Template:Cite_doi/10.1007.2Fs11134-009-9147-4&action=edit&editintro=Template:Cite_doi/editintro2"},"sa":{"href":"ef>\n\n==Model definition==\n\nAn M/D/''c'' queue is a stochastic process whose state space is the set {0,1,2,3,...} where the value "}}'>edit</a>
  3. <a href="#cite_ref-3-0">↑</a> <span class="citation journal" data-parsoid='{"src":""The theory of probabilities and telephone conversations" (PDF). Nyt Tidsskrift for Matematik B. 20: 33–39. 1909.","dsr":[555,795,null,null]}' about="#mwt9" typeof="mw:Transclusion" data-mw='{"target":{"wt":"cite journal ","href":"../../Template:Cite_journal"},"params":{" title ":{"wt":"The theory of probabilities and telephone conversations "}," journal ":{"wt":"Nyt Tidsskrift for Matematik B "}," volume ":{"wt":"20 "}," pages ":{"wt":"33–39 "}," url ":{"wt":"http://oldwww.com.dtu.dk/teletraffic/erlangbook/pps131-137.pdf "}," year ":{"wt":"1909"}}}'><a rel="mw:ExtLink" href="http://oldwww.com.dtu.dk/teletraffic/erlangbook/pps131-137.pdf" data-parsoid='{"targetOff":95,"a":{"href":"http://oldwww.com.dtu.dk/teletraffic/erlangbook/pps131-137.pdf"},"sa":{"href":"line within the mathematical [[probability theory|theory of pr"}}'>"The theory of probabilities and telephone conversations"</a>. Nyt Tidsskrift for Matematik B 20: 33–39. 1909. 
  4. <a href="#cite_ref-franx-4-0">↑</a> <span class="citation journal" data-parsoid='{"src":"Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/S0167-6377(01)00108-0, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1016/S0167-6377(01)00108-0 instead.","dsr":[1763,1805,null,null]}' about="#mwt12" typeof="mw:Transclusion" data-mw='{"target":{"wt":"cite doi","href":"../../Template:Cite_doi"},"params":{"1":{"wt":"10.1016/S0167-6377(01)00108-0"}}}'>Franx, G. J. (2001). "A simple solution for the M/D/c waiting time distribution". Operations Research Letters 29 (5): 221–229. <a rel="mw:WikiLink" href="../../Digital_object_identifier" data-parsoid='{"a":{"href":"../../Digital_object_identifier"},"sa":{"href":"Digital object identifier"},"stx":"piped"}'>doi</a>:<a rel="mw:ExtLink" href="http://dx.doi.org/10.1016%2FS0167-6377%2801%2900108-0" data-parsoid='{"targetOff":258,"a":{"href":"http://dx.doi.org/10.1016%2FS0167-6377%2801%2900108-0"},"sa":{"href":" are determined by a Poisson process and job serv"}}'>10.1016/S0167-6377(01)00108-0</a>.  <a rel="mw:ExtLink" href="/w/index.php?title=Template:Cite_doi/10.1016.2FS0167-6377.2801.2900108-0&action=edit&editintro=Template:Cite_doi/editintro2" data-parsoid='{"targetOff":1010,"a":{"href":"//en.wikipedia.org/w/index.php?title=Template:Cite_doi/10.1016.2FS0167-6377.2801.2900108-0&action=edit&editintro=Template:Cite_doi/editintro2"},"sa":{"href":"whose state space is the set {0,1,2,3,...} where the value corresponds to the number of customers in the system, including any currently "}}'>edit</a>
  5. <a href="#cite_ref-5-0">↑</a> <span class="citation journal" data-parsoid='{"src":"Crommelin, C.D. (1932). "Delay probability formulas when the holding times are constant". P.O. Electr. Engr. J. 25: 41–50.","dsr":[2088,2283,null,null]}' about="#mwt16" typeof="mw:Transclusion" data-mw='{"target":{"wt":"cite journal ","href":"../../Template:Cite_journal"},"params":{" first ":{"wt":"C.D. "}," last ":{"wt":"Crommelin "}," title ":{"wt":"Delay probability formulas when the holding times are constant "}," journal ":{"wt":"P.O. Electr. Engr. J."}," volume ":{"wt":"25"}," year":{"wt":"1932"}," pages":{"wt":"41–50"}}}'>Crommelin, C.D. (1932). "Delay probability formulas when the holding times are constant". P.O. Electr. Engr. J. 25: 41–50. 

<table cellspacing="0" class="navbox" style="border-spacing:0;" about="mwt23" data-parsoid='{"src":"

","dsr":[2602,2606,2,2]}' typeof="mw:Transclusion" data-mw='{"target":{"wt":"Queueing theory","href":"../../Template:Queueing_theory"},"params":{}}'><tbody data-parsoid="{}">

<tbody data-parsoid="{}"></tbody>

</tbody> <table cellspacing="0" class="navbox" style="border-spacing:0;" about="mwt25" data-parsoid='{"src":"

","dsr":[2607,2611,2,2]}' typeof="mw:Transclusion" data-mw='{"target":{"wt":"Stochastic processes","href":"../../Template:Stochastic_processes"},"params":{}}'><tbody data-parsoid="{}">

<tbody data-parsoid="{}"></tbody>

</tbody>

<meta property="mw:PageProp/categorydefaultsort" content="M D c queue" data-parsoid='{"src":"","dsr":[2613,2640,null,null]}'> <link rel="mw:WikiLink/Category" href="../../Category:Stochastic_processes" data-parsoid='{"a":{"href":"../../Category:Stochastic_processes"},"sa":{"href":"Category:Stochastic processes"},"stx":"simple","dsr":[2641,2674,null,null]}'> <link rel="mw:WikiLink/Category" href="../../Category:Single_queueing_nodes" data-parsoid='{"a":{"href":"../../Category:Single_queueing_nodes"},"sa":{"href":"Category:Single queueing nodes"},"stx":"simple","dsr":[2675,2709,null,null]}'></body></html>