Jump to content

Talk:Cumulative distribution function

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Duoduoduo (talk | contribs) at 15:08, 17 May 2013 (cdf notation: new section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
WikiProject iconMathematics C‑class High‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
CThis article has been rated as C-class on Wikipedia's content assessment scale.
HighThis article has been rated as High-priority on the project's priority scale.
WikiProject iconStatistics C‑class High‑importance
WikiProject iconThis article is within the scope of WikiProject Statistics, a collaborative effort to improve the coverage of statistics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
CThis article has been rated as C-class on Wikipedia's content assessment scale.
HighThis article has been rated as High-importance on the importance scale.

cadlag

while the distribution is required to be cadlag? a discussion section on this will be valuable. Jackzhp (talk) 18:46, 15 August 2009 (UTC)[reply]

Moreover there is a tradition here (I suppose because of Kolmogorov's original notation, but I'm not sure) that the CDF should be left continous... Drkazmer Just tell me... 23:01, 2 January 2012 (UTC)[reply]

Complementary Comulative Distribution function

I assume there is an error after "Proof: Assuming X has density function f, we have for any c > 0", regarding integration limits for E(X) ? —Preceding unsigned comment added by Amir bike (talkcontribs) 05:54, 19 May 2011 (UTC)[reply]

It is said that Markov's inequality states that: However it is only correct in continuous case, as in discrete case Although the Inequality still holds, the current version is weaker than the proper Markov's inequality — Preceding unsigned comment added by Colinfang (talkcontribs) 18:59, 4 March 2012 (UTC)[reply]

The current version is the standard statement of Markov's inequality found in reference books. If there is a stronger result, it could be stated with a citation. If the stronger resuly is still generally known as Markov's inequality, then the Markov's inequality article could be updated as well. But the version in the article (now) states valid conditions under which the results hold. Melcombe (talk) 16:58, 15 April 2012 (UTC)[reply]

Utility

It would be helpful if in the entry there was a discussion of the utility performing a CDF plot. This would include when to perform one, and what information is learned from performing the CDF plot. What real world applications would this include? Maybe an example would be helpful — Preceding unsigned comment added by 209.252.149.162 (talk) 14:10, 1 August 2011 (UTC)[reply]

Table of cdfs

I have moved the recently added table of cdfs to here for discussion/revision. The version added was ...

Distribution Cumulative Density function
Binomial B(n, p)  
Negative binomial NB(r, p)  
Poisson Pois()  
Uniform U(a, b)   for
Normal N(µ, )  
Chi-squared  
Cauchy Cauchy(µ, )  
Gamma G(k, )  
Exponential Exp()  

There are several problems here, particularly with inconsistent notations. But there are structural problems in defining the cdfs of the discrete distributions, as the formulae given are only valid at the integer points (within the range of the distribution) and would give incorrect values of the cdf at non-integer values. Also several of the functions involved require definitions/wikilinks. So, if the table is to be included, thought needs to be given to possibly dividing it into discrete/continuous tables and/or adding extra columns. Melcombe (talk) 09:25, 21 October 2011 (UTC)[reply]

citation needed.... really?

I think it is a little bit ridiculous to expect a citation that a CDF is càdlàg. It is an almost trivial observation that follows directly from the probability space axioms and the definition of a càdlàg function. Surely this is a routine calculation. --217.84.60.220 (talk) 11:32, 3 November 2012 (UTC)[reply]

Please, for didactic, show area relation

EXAMPLE

http://beyondbitsandatomsblog.stanford.edu/spring2010/files/2010/04/CdfAndPdf.gif — Preceding unsigned comment added by 187.66.187.183 (talk) 07:25, 3 February 2013 (UTC)[reply]

CDF is definitely LEFT-continuous.

CDF must be left-continuous, not right as stated on the wiki page. Source: current ongoing University studies, 3 separate professors, books from 4 different authors. — Preceding unsigned comment added by 213.181.200.159 (talk) 07:46, 6 March 2013 (UTC)[reply]

This article follows the convention reached via the link right-continuous. This is "continuous from the right". Perhaps you are thinking of "continuous to the left". 81.98.35.149 (talk) 11:34, 6 March 2013 (UTC)[reply]

Not that redundant?

The passage that I deleted but which was restored said

Point probability
The "point probability" that X is exactly b can be found as
This equals zero if F is continuous at x.

However, at the end of the section "Definition" it says

In the case of a random variable X which has distribution having a discrete component at a value x0,
where F(x0-) denotes the limit from the left of F at x0: i.e. lim F(y) as y increases towards x0.

What I deleted looks identical to that, except that it doesn't include the sentence This equals zero if F is continuous at x.

I propose that we re-delete it but put the last-mentioned sentence into the existing section.

Okay, no problem. Nijdam (talk) 07:08, 19 April 2013 (UTC)[reply]

cdf notation

I went through and changed the notation to everywhere in the definition section to try to obtain notational consistency through the article, but the change was reverted by Nijdam with edit summary "Difference between cdf of X and just a cdf". But that conflicts with much notation in the article that uses F(x) for the cdf of X. In the Properties section:

the CDF of X will be discontinuous at the points xi and constant in between:
If the CDF F of X is continuous, then X is a continuous random variable; if furthermore F is absolutely continuous, then there exists a Lebesgue-integrable function f(x) such that
for all real numbers a and b. The function f is equal to the derivative of F almost everywhere, and it is called the probability density function of the distribution of X.

In the Examples section:

As an example, suppose X is uniformly distributed on the unit interval [0, 1]. Then the CDF of X is given by

In the Derived functions section:

In the multivariate case section:

for a pair of random variables X,Y, the joint CDF is given by

So we need to establish consistency of notation -- either use FX every time we mention a cdf "of X", or else never. Your thoughts? Duoduoduo (talk) 15:08, 17 May 2013 (UTC)[reply]