Kneser's theorem (combinatorics)
Appearance
In mathematics, in the field of additive combinatorics, Kneser's theorem, named after Martin Kneser, is a statement about set addition in finite groups.[1] It may be regarded as an extension of the Cauchy-Davenport theorem on sumsets in groups of prime order.[2]
Statement
Let G be a non-trivial abelian group and A, B finite non-empty subsets. If |A| + |B| ≤ |G| then there is a finite subgroup H of G such that[3]
The subgroup H can be taken to be the stabiliser[2] of A+B
Notes
- ^ Kneser, Martin (1953). "Abschätzungen der asymptotischen Dichte von Summenmengen". Math. Zeitschr. (in German). 58: 459–484. Zbl 0051.28104.
- ^ a b Geroldinger & Rusza (2009) p.143
- ^ Tao & Vu 2010, pg. 200, Theorem 5.5
References
- Geroldinger, Alfred; Ruzsa, Imre Z., eds. (2009). Combinatorial number theory and additive group theory. Advanced Courses in Mathematics CRM Barcelona. Elsholtz, C.; Freiman, G.; Hamidoune, Y. O.; Hegyvári, N.; Károlyi, G.; Nathanson, M.; Solymosi, J.; Stanchescu, Y. With a foreword by Javier Cilleruelo, Marc Noy and Oriol Serra (Coordinators of the DocCourse). Basel: Birkhäuser. ISBN 978-3-7643-8961-1. Zbl 1177.11005.
- Nathanson, Melvyn B. (1996). Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Graduate Texts in Mathematics. Vol. 165. Springer-Verlag. pp. 109–132. ISBN 0-387-94655-1. Zbl 0859.11003.
- Tao, Terence; Vu, Van H. (2010), Additive Combinatorics, Cambridge: Cambridge University Press, ISBN 978-0-521-13656-3, Zbl 1179.11002