Jump to content

Conditional convergence

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Addbot (talk | contribs) at 07:17, 28 February 2013 (Bot: Migrating 4 interwiki links, now provided by Wikidata on d:q2425336 (Report Errors)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely.

Definition

More precisely, a series is said to converge conditionally if exists and is a finite number (not ∞ or −∞), but

A classical example is given by

which converges to , but is not absolutely convergent (see Harmonic series).

The simplest examples of conditionally convergent series (including the one above) are the alternating series.

Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any sum at all, including ∞ or −∞; see Riemann series theorem.

A typical conditionally convergent integral is that on the non-negative real axis of sin(x^2).

See also

References

  • Walter Rudin, Principles of Mathematical Analysis (McGraw-Hill: New York, 1964).