Jump to content

Quaternionic vector space

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by David Eppstein (talk | contribs) at 19:03, 14 February 2013 (dab Finitely generated module). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a left (or right) quaternionic vector space is a left (or right) H-module where H denotes the noncommutative ring of the quaternions.

The space Hn of n-tuples of quaternions is both a left and right H-module using the componentwise left and right multiplication:

for quaternions q and q1, q2, ... qn.

Since H is a division algebra, every finitely generated (left or right) H-module has a basis, and hence is isomorphic to Hn for some n.

See also

References

  • Harvey, F. Reese (1990). Spinors and Calibrations. San Diego: Academic Press. ISBN 0-12-329650-1.