Brauer's theorem on forms
Appearance
- There also is Brauer's theorem on induced characters.
In mathematics, Brauer's theorem, named for Richard Brauer, is a result on the representability of 0 by forms over certain fields in sufficiently many variables.[1]
Statement of Brauer's theorem
Let K is a field such that for every integer r > 0 there exists an integer ψ(r) such that for n ≥ ψ(r) every equation
has a non-trivial (i.e. not all xi are equal to 0) solution in K. Then, given homogeneous polynomials f1,...,fk of degrees r1,...,rk respectively with coefficients in K, for every set of positive integers r1,...,rk and every non-negative integer l, there exists a number ω(r1,...,rk,l) such that for n ≥ ω(r1,...,rk,l) there exists an l-dimensional affine subspace M of K (regarded as a vector space) satisfying
References
- ^ R. Brauer, A note on systems of homogeneous algebraic equations, Bulletin of the American Mathematical Society, 51, pages 749-755 (1945)