Jump to content

Truncated order-8 triangular tiling

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Double sharp (talk | contribs) at 14:34, 28 January 2013 (Double sharp moved page Order-8 truncated triangular tiling to Truncated order-8 triangular tiling). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Truncated order-8 triangular tiling
Truncated order-8 triangular tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 8.6.6
Schläfli symbol t{3,8}
Wythoff symbol 2 8 | 3
4 3 3 |
Coxeter diagram
Symmetry group [8,3], (*832)
[(4,3,3)], (*433)
Dual Octakis octagonal tiling
Properties Vertex-transitive

In geometry, the Order-8 truncated triangular tiling is a semiregular tiling of the hyperbolic plane. There are two hexagons and one octagon on each vertex. It has Schläfli symbol of t1,2{8,3}.

From a Wythoff construction there are ten hyperbolic uniform tilings that can be based from the regular octagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.

Uniform octagonal/triangular tilings
Symmetry: [8,3], (*832) [8,3]+
(832)
[1+,8,3]
(*443)
[8,3+]
(3*4)
{8,3} t{8,3} r{8,3} t{3,8} {3,8} rr{8,3}
s2{3,8}
tr{8,3} sr{8,3} h{8,3} h2{8,3} s{3,8}




or

or





Uniform duals
V83 V3.16.16 V3.8.3.8 V6.6.8 V38 V3.4.8.4 V4.6.16 V34.8 V(3.4)3 V8.6.6 V35.4

This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (n.6.6), and [n,3] Coxeter group symmetry.

*n32 symmetry mutation of truncated tilings: n.6.6
Sym.
*n42
[n,3]
Spherical Euclid. Compact Parac. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
[12i,3] [9i,3] [6i,3]
Truncated
figures
Config. 2.6.6 3.6.6 4.6.6 5.6.6 6.6.6 7.6.6 8.6.6 ∞.6.6 12i.6.6 9i.6.6 6i.6.6
n-kis
figures
Config. V2.6.6 V3.6.6 V4.6.6 V5.6.6 V6.6.6 V7.6.6 V8.6.6 V∞.6.6 V12i.6.6 V9i.6.6 V6i.6.6

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.