Jump to content

Talk:Uniformly convex space

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Hanche (talk | contribs) at 11:10, 24 January 2013. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Just a note (to me and others). If I remember correctly, the notion of the uniform convexity also applies to some class of linear operators. (they are called uniform convex operators or something.) Since uniform convexity redirects here, this needs to be discussed. -- Taku (talk) 23:02, 4 June 2008 (UTC)[reply]

I just undid a pair of edits giving a wrong counterexample to the Milman–Pettis theorem (the point being that is not reflexive. A trivial counterexample would be for any finite set , but that is too trivial to deserve mention. A proper counterexample would be a reflexive space with no equivalent uniformly convex norm. I think such a counterexample exists; I will try to find one in the literature and add a reference if I succeed. Hanche (talk) 21:04, 20 January 2013 (UTC)[reply]

Just noticed that the edit didn't “take”, don't know why. Redone now. My promised update will have to wait, as my university has lost MathSciNet access for reasons unknown. Hanche (talk) 10:31, 22 January 2013 (UTC)[reply]
I found a reference to a counterexample – decided to put it in the article on the Milman–Pettis theorem instead. Hanche (talk) 11:10, 24 January 2013 (UTC)[reply]