Jump to content

Dynamic network analysis

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Mattdereno (talk | contribs) at 04:56, 16 May 2006. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Dynamic Network Analysis

Dynamic Network Analysis (DNA) is an emergent scientific field that brings together traditional social network analysis (SNA), link analysis (LA) and multi-agent systems (MAS). There are two aspects of this field. The first is the statistical analysis of DNA data. The second is the utilization of simulation to address issues of network dynamics. DNA networks vary from traditional social networks in that are larger dynamic multi-mode, multi-plex networks, and may contain varying levels of uncertainty.

DNA statistical tools are generally optimized for large-scale networks and admit the analysis of multiple networks simultaneously in which, there are multiple types of nodes (multi-node) and multiple types of links (multi-plex).In contrast, SNA statistical tools focus on single or at most two mode data and facilitate the analysis of only one type of link at a time.

DNA statistical tools tend to provide more measures to the user, because they have measures that use data drawn from multiple networks simultaneously. From a computer simulation perspective, nodes in DNA are like atoms in quantum theory, nodes can be, though need not be, treated as probabilistic. Whereas nodes in a traditional SNA model are static, nodes in a DNA model have the ability to learn. Properties change over time; nodes can adapt: A company's employees can learn new skills and increase their value to the network; Or, kill one terrorist and three more are forced to improvise. Change propagates from one node to the next and so on. DNA adds the critical element of a network's evolution and considers the circumstances under which change is likely to occur.

Where to learn to more

Kathleen M. Carley, 2003, “Dynamic Network Analysis” in Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers, Ronald Breiger, Kathleen Carley, and Philippa Pattison, (Eds.) Committee on Human Factors, National Research Council, National Research Council. Pp. 133-145, Washington, DC. style="font-family: helvetica,arial,sans-serif;">

Kathleen M. Carley, 2002, “Smart Agents and Organizations of the Future” The Handbook of New Media. Edited by Leah Lievrouw and Sonia Livingstone, Ch. 12, pp. 206-220, Thousand Oaks, CA, Sage.

Kathleen M. Carley, Jana Diesner, Jeffrey Reminga, Maksim Tsvetovat, 2005-forthcoming, Toward an Interoperable Dynamic Network Analysis Toolkit, DSS Special Issue on Cyberinfrastructure for Homeland Security: Advances in Information Sharing, Data Mining, and Collaboration Systems.