Extraneous variable
Extraneous variables are variables, other than the independent variables whose effects are of interest to the researcher, that may have an effect on the outcome variable being studied. Extraneous variables, if included in a regression as independent variables, may aid a researcher with accurate response parameter estimation, prediction, and goodness of fit, but are not of substantive interest to the hypothesis under examination. For example, in a study examining the effect of post-secondary education on lifetime earnings, some extraneous variables might be gender, ethnicity, social class, genetics, intelligence, age, and so forth.
A variable is extraneous only when it can be assumed (or shown) to influence the dependent variable. If included in a regression, it can improve the fit of the model. If it is excluded from the regression and if it has a non-zero covariance with one or more of the independent variables of interest, its omission will bias the regression's result for the effect of that independent variable of interest.
Extraneous variables are often classified into three types:
- Subject variables, which are the characteristics of the individuals being studied that might affect their actions. These variables include age, gender, health status, mood, background, etc.
- Experimental variables are characteristics of the persons conducting the experiment which might influence how a person behaves. Gender, the presence of racial discrimination, language, or other factors may qualify as such variables.
- Situational variables are features of the environment in which the study or research was conducted, which have a bearing on the outcome of the experiment in a negative way. Included are the air temperature, level of activity, lighting, and the time of day.
Extraneous variables might also introduce confounding, wherein the relationship between an independent and dependent variable depends on the level of a third, extraneous variable. In these situations, design changes and/or statistical control is necessary.