From Wikipedia, the free encyclopedia
In mathematics and signal processing, the advanced Z-transform is an extension of the Z-transform, to incorporate ideal delays that are not multiples of the sampling time. It takes the form

where
- T is the sampling period
- m (the "delay parameter") is a fraction of the sampling time

It is also known as the modified Z-transform.
The advanced Z-transform is widely applied, for example to model accurately processing delays in digital control.
Properties
If the delay parameter, m, is considered fixed then all the properties of the Z-transform hold for the advanced Z-transform.
Linearity
![{\displaystyle Z\left[\sum _{k=1}^{m}c_{k}f_{k}(t)\right]=\sum _{k=1}^{m}c_{k}F(z,m).}](/media/api/rest_v1/media/math/render/svg/b31265da3c0cf3461ecec601e8320964deffc1fd)
Time shift
![{\displaystyle Z\left[u(t-nT)f(t-nT)\right]=z^{-n}F(z,m).}](/media/api/rest_v1/media/math/render/svg/25a2e13ad79318a8d8787e738817c372a6122d53)
Damping
![{\displaystyle Z\left[f(t)e^{-a\,t}\right]=e^{-a\,m}F(e^{a\,T}z,m).}](/media/api/rest_v1/media/math/render/svg/cb734c6c1932d5d7939212e5e25bb8a9b9740d41)
Time multiplication
![{\displaystyle Z\left[t^{y}f(t)\right]=\left(-Tz{\frac {d}{dz}}+m\right)^{y}F(z,m).}](/media/api/rest_v1/media/math/render/svg/98deb6d6979b8bbddd256c7c1b129e27f79164a8)
Final value theorem

Example
Consider the following example where
![{\displaystyle F(z,m)=Z\left[\cos \left(\omega \left(kT+m\right)\right)\right]}](/media/api/rest_v1/media/math/render/svg/26c7b515ce7a27f7919ba1915c293a397f0fdc88)
![{\displaystyle F(z,m)=Z\left[\cos(\omega kT)\cos(\omega m)-\sin(\omega kT)\sin(\omega m)\right]}](/media/api/rest_v1/media/math/render/svg/2caa4618bfec763cf1666fa5c092f4258663f9f0)
![{\displaystyle F(z,m)=\cos(\omega m)Z\left[\cos(\omega kT)\right]-\sin(\omega m)Z\left[\sin(\omega kT)\right]}](/media/api/rest_v1/media/math/render/svg/a1f57d62ed1048ede83f55e265ac717c5bf6af83)


If
then
reduces to the Z-transform

which is clearly just the Z-transform of
See also
Bibliography
- Eliahu Ibrahim Jury, Theory and Application of the Z-Transform Method, Krieger Pub Co, 1973. ISBN 0-88275-122-0.