Jump to content

Genetic algorithms in economics

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 212.34.250.230 (talk) at 09:51, 13 November 2012. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Genetic algorithms s these agents can be deployed with: social learning and individual learning. In social learning, each firm is endowed with a single string which is used as its quantity production decision. It then compares this string against other firms' strings. In the individual learning case, agents are endowed with a pool of strings. These strings are then compared against other strings within the agent's population pool. This can be thought of as mutual competing ideas within a firm whereas in the social case, it can be thought of as a firm learning from more successful firms. Note that in the social case and in the individual learning case with identical cost functions, that this is a homogeneous solution, that is all agents' production decisions are identical. However, if the cost functions are not identical, this will result in a heterogeneous solution, where firms produce different quantities (note that they are still locally homogeneous, that is within the firm's own pool all the strings are identical).

After all agents have made a quantity production decision, the quantities are aggregated and plugged into a demand function to get a price. Each firm's profit is then calculated. Fitness values are then calculated as a function of profits. After the offspring pool is generated, hypothetical fitness values are calculated. These hypothetical values are based on some sort of estimation of the price level, often just by taking the previous price level.

References

  • J Arifovic, 'Genetic Algorithm Learning and the Cobweb Model ', Journal of Economic Dynamics and Control, vol. 18, Issue 1, (January 1994), 3–28.