Jump to content

FTCS scheme

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Salih (talk | contribs) at 03:59, 23 October 2012. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In numerical analysis, the FTCS (Forward-Time Central-Space) method is a finite difference method used for numerically solving the heat equation and similar parabolic partial differential equations.[1] It is a first-order method in time, explicit in time, and is conditionally stable when applied to the heat equation. When used as a method for advection equations, or more generally Hyperbolic partial differential equation, it is unstable unless artificial viscosity is included. The abbreviation FTCS was first used by Patrick Roache.[2][3]

The method

The FTCS method is based on central difference in space and the forward Euler method in time, giving first-order convergence in time. For example, in one dimension, if the partial differential equation is

then, letting , the forward Euler method is given by:

The function must be discretized spatially with a central difference scheme. This is an explicit method which means that, can be explicitly computed (no need of solving a system of algebraic equations) if values of at previous time level are known. FTCS method is computationally inexpensive since the method is explicit.

Illustration: one-dimensional heat equation

The FTCS method is often applied to diffusion problems. As an example, for 1D heat equation,

the FTCS scheme is given by:

or, letting :

Stability

The FTCS method, for one-dimensional equations, is numerically stable if and only if the following condition is satisfied:

The time step is subjected to the restriction given by the above stability condition. A major drawback of the method is for problems with large diffusivity the time step restriction can be too severe.

See also

References

  1. ^ John C. Tannehill; Dale A. Anderson; Richard H. Pletcher (1997). Computational Fluid Mechanics and Heat Transfer (2nd ed.). Taylor & Francis. ISBN 1-56032-046-X.
  2. ^ Patrick J. Roache (1972). Computational Fluid Dynamics (1st ed.). Hermosa. ISBN 0-913478-05-9.
  3. ^ Patrick J. Roache (1998). Computational Fluid Dynamics (2nd ed.). Hermosa. ISBN 0-913478-09-1.