Genetic engineering techniques
Isolating the gene
First, the gene to be inserted into the genetically modified organism must be chosen and isolated. Presently, most genes transferred into plants provide protection against insects or tolerance to herbicides.[1] In animals the majority of genes used are growth hormone genes.[2] Once chosen the genes must be isolated. This typically involves multiplying the gene using polymerase chain reaction (PCR). If the chosen gene or the donor organism's genome has been well studied it may be present in a genetic library. If the DNA sequence is known, but no copies of the gene are available, it can be artificially synthesized. Once isolated, the gene is inserted into a bacterial plasmid.
Constructs
The gene to be inserted into the genetically modified organism must be combined with other genetic elements in order for it to work properly. The gene can also be modified at this stage for better expression or effectiveness. As well as the gene to be inserted most constructs contain a promoter and terminator region as well as a selectable marker gene. The promoter region initiates transcription of the gene and can be used to control the location and level of gene expression, while the terminator region ends transcription. The selectable marker, which in most cases confers antibiotic resistance to the organism it is expressed in, is needed to determine which cells are transformed with the new gene. The constructs are made using recombinant DNA techniques, such as restriction digests, ligations and molecular cloning.[3]
Gene targeting
The most common form of genetic engineering involves inserting new genetic material randomly within the host genome. Other techniques allow new genetic material to be inserted at a specific location in the host genome or generate mutations at desired genomic loci capable of knocking out endogenous genes. The technique of gene targeting uses homologous recombination to target desired changes to a specific endogenous gene. This tends to occur at a relatively low frequency in plants and animals and generally requires the use of selectable markers. The frequency of gene targeting can be greatly enhanced with the use of engineered nucleases such as zinc finger nucleases,[4] [5] engineered homing endonucleases,[6] [7] or nucleases created from TAL effectors.[8] [9] In addition to enhancing gene targeting, engineered nucleases can also be used to introduce mutations at endogenous genes that generate a gene knockout[10] .[11]
Transformation

About 1% of bacteria are naturally able to take up foreign DNA but it can also be induced in other bacteria.[12] Stressing the bacteria for example, with a heat shock or an electric shock, can make the cell membrane permeable to DNA that may then incorporate into their genome or exist as extrachromosomal DNA. DNA is generally inserted into animal cells using microinjection, where it can be injected through the cells nuclear envelope directly into the nucleus or through the use of viral vectors. In plants the DNA is generally inserted using Agrobacterium-mediated recombination or biolistics.[13]
In Agrobacterium-mediated recombination the plasmid construct must also contain T-DNA. Agrobacterium naturally inserts DNA from a tumor inducing plasmid into any susceptible plant's genome it infects, causing crown gall disease. The T-DNA region of this plasmid is responsible for insertion of the DNA. The genes to be inserted are cloned into a binary vector, which contains T-DNA and can be grown in both E. Coli and Agrobacterium. Once the binary vector is constructed the plasmid is transformed into Agrobacterium containing no plasmids and plant cells are infected. The Agrobacterium will then naturally insert the genetic material into the plant cells.[14]
In biolistics particles of gold or tungsten are coated with DNA and then shot into young plant cells or plant embryos. Some genetic material will enter the cells and transform them. This method can be used on plants that are not susceptible to Agrobacterium infection and also allows transformation of plant plastids. Another transformation method for plant and animal cells is electroporation. Electroporation involves subjecting the plant or animal cell to an electric shock, which can make the cell membrane permeable to plasmid DNA. In some cases the electroporated cells will incorporate the DNA into their genome. Due to the damage caused to the cells and DNA the transformation efficiency of biolistics and electroporation is lower than agrobacterial mediated transformation and microinjection.[15]
Selection
Not all the organism's cells will be transformed with the new genetic material; in most cases a selectable marker is used to differentiate transformed from untransformed cells. If a cell has been successfully transformed with the DNA it will also contain the marker gene. By growing the cells in the presence of an antibiotic or chemical that selects or marks the cells expressing that gene it is possible to separate the transgenic events from the non-transgenic. Another method of screening involves using a DNA probe that will only stick to the inserted gene. A number of strategies have been developed that can remove the selectable marker from the mature transgenic plant.[16]
Regeneration
As often only a single cell is transformed with genetic material the organism must be regrown from that single cell. As bacteria consist of a single cell and reproduce clonally regeneration is not necessary. In plants this is accomplished through the use of tissue culture. Each plant species has different requirements for successful regeneration through tissue culture. If successful an adult plant is produced that contains the transgene in every cell. In animals it is necessary to ensure that the inserted DNA is present in the embryonic stem cells. When the offspring is produced they can be screened for the presence of the gene. All offspring from the first generation will be heterozygous for the inserted gene and must be mated together to produce a homozygous animal.
Confirmation
The finding that a recombinant organism contains the inserted genes is not usually sufficient to ensure that the genes will be expressed in an appropriate manner in the intended tissues of the recombinant organism. To examine the presence of the gene, further analysis frequently uses PCR, Southern hybridization, and DNA sequencing, which serve to determine the chromosomal location and copy number of the inserted gene. To examine expression of the trans-gene, an extensive analysis of transcription, RNA processing patterns, and the expression and localization of the protein product(s) is usually necessary, using methods including northern hybridization, quantitative RT-PCR, Western blot, immunofluorescence and phenotypic analysis. When appropriate, the organism's offspring are studied to confirm that the trans-gene and associated phenotype are stably inherited.
- ^ James, Clive (2008). "Global Status of Commercilized Biotech/GM Crops:2008". ISSA Brief No. 39.
- ^ Food and Agricultural Organisation of the United Nations. "The process of genetic modification".
- ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1534/genetics.109.112144, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1534/genetics.109.112144
instead. - ^
Townsend JA, Wright DA, Winfrey RJ; et al. (2009). "High-frequency modification of plant genes using engineered zinc-finger nucleases". Nature. 459 (7245): 442–5. Bibcode:2009Natur.459..442T. doi:10.1038/nature07845. PMC 2743854. PMID 19404258.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Shukla VK, Doyon Y, Miller JC; et al. (2009). "Precise genome modification in the crop species Zea mays using zinc-finger nucleases". Nature. 459 (7245): 437–41. Bibcode:2009Natur.459..437S. doi:10.1038/nature07992. PMID 19404259.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Grizot S, Smith J, Daboussi F; et al. (2009). "Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease". Nucleic Acids Res. 37 (16): 5405–19. doi:10.1093/nar/gkp548. PMC 2760784. PMID 19584299.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Gao H, Smith J, Yang M; et al. (2010). "Heritable targeted mutagenesis in maize using a designed endonuclease". Plant J. 61 (1): 176–87. doi:10.1111/j.1365-313X.2009.04041.x. PMID 19811621.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Christian M, Cermak T, Doyle EL; et al. (2010). "TAL Effector Nucleases Create Targeted DNA Double-strand Breaks". Genetics. 186 (2): 757–61. doi:10.1534/genetics.110.120717. PMC 2942870. PMID 20660643.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Li T, Huang S, Jiang WZ; et al. (2010). "TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain". Nucleic Acids Res. 39 (1): 359–72. doi:10.1093/nar/gkq704. PMC 3017587. PMID 20699274.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ S.C. Ekker (2008). "Zinc finger-based knockout punches for zebrafish genes". Zebrafish. 5 (2): 1121–3. doi:10.1089/zeb.2008.9988. PMC 2849655. PMID 18554175.
- ^
Geurts AM, Cost GJ, Freyvert Y; et al. (2009). "Knockout rats via embryo microinjection of zinc-finger nucleases". Science. 325 (5939): 433. Bibcode:2009Sci...325..433G. doi:10.1126/science.1172447. PMC 2831805. PMID 19628861.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Chen I, Dubnau D (2004). "DNA uptake during bacterial transformation". Nat. Rev. Microbiol. 2 (3): 241–9. doi:10.1038/nrmicro844. PMID 15083159.
- ^ Graham Head; Hull, Roger H; Tzotzos, George T. (2009). Genetically Modified Plants: Assessing Safety and Managing Risk. London: Academic Pr. p. 244. ISBN 0-12-374106-8.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1128/MMBR.67.1.16-37.2003, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1128/MMBR.67.1.16-37.2003
instead. - ^ Behrooz Darbani, Safar Farajnia, Mahmoud Toorchi, Saeed Zakerbostanabad, Shahin Noeparvar and C. Neal Stewart Jr. (2010). "DNA-Delivery Methods to Produce Transgenic Plants". Science Alert.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ^ Barbara Hohn, Avraham A Levy and Holger Puchta (2001). "Elimination of selection markers from transgenic plants". Current Opinion in Biotechnology. 12 (2): 139–143. doi:10.1016/S0958-1669(00)00188-9. PMID 11287227.