From Wikipedia, the free encyclopedia
In number theory , the Euler numbers are a sequence En of integers (sequence A122045 in the OEIS ) defined by the following Taylor series expansion:
1
cosh
t
=
2
e
t
+
e
−
t
=
∑
n
=
0
∞
E
n
n
!
⋅
t
n
{\displaystyle {\frac {1}{\cosh t}}={\frac {2}{e^{t}+e^{-t}}}=\sum _{n=0}^{\infty }{\frac {E_{n}}{n!}}\cdot t^{n}\!}
where cosh t is the hyperbolic cosine . The Euler numbers appear as a special value of the Euler polynomials .
The odd-indexed Euler numbers are all zero . The even-indexed ones (sequence A028296 in the OEIS ) have alternating signs. Some values are:
E 0 = 1
E 2 = −1
E 4 = 5
E 6 = −61
E 8 = 1,385
E 10 = −50,521
E 12 = 2,702,765
E 14 = −199,360,981
E 16 = 19,391,512,145
E 18 = −2,404,879,675,441
Some authors re-index the sequence in order to omit the odd-numbered Euler numbers with value zero, and/or change all signs to positive. This encyclopedia adheres to the convention adopted above.
The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. They also occur in combinatorics , specifically when counting the number of alternating permutations of a set with an even number of elements.
Iterated sum
An explicit formula for Euler numbers is given by[ 1] :
E
2
n
=
i
∑
k
=
1
2
n
+
1
∑
j
=
0
k
(
k
j
)
(
−
1
)
j
(
k
−
2
j
)
2
n
+
1
2
k
i
k
k
{\displaystyle E_{2n}=i\sum _{k=1}^{2n+1}\sum _{j=0}^{k}{k \choose j}{\frac {(-1)^{j}(k-2j)^{2n+1}}{2^{k}i^{k}k}}}
where i denotes the imaginary unit with i 2 =−1.
Sum over partitions
The Euler number E 2n can be expressed as a sum over the even partitions of 2n ,[ 2]
E
2
n
=
(
2
n
)
!
∑
0
≤
k
1
,
…
,
k
n
≤
n
(
K
k
1
,
…
,
k
n
)
δ
n
,
∑
m
k
m
(
−
1
2
!
)
k
1
(
−
1
4
!
)
k
2
⋯
(
−
1
(
2
n
)
!
)
k
n
,
{\displaystyle E_{2n}=(2n)!\sum _{0\leq k_{1},\ldots ,k_{n}\leq n}~\left({\begin{array}{c}K\\k_{1},\ldots ,k_{n}\end{array}}\right)\delta _{n,\sum mk_{m}}\left({\frac {-1~}{2!}}\right)^{k_{1}}\left({\frac {-1~}{4!}}\right)^{k_{2}}\cdots \left({\frac {-1~}{(2n)!}}\right)^{k_{n}},}
as well as a sum over the odd partitions of 2n − 1,[ 3]
E
2
n
=
(
−
1
)
n
−
1
(
2
n
−
1
)
!
∑
0
≤
k
1
,
…
,
k
n
≤
2
n
−
1
(
K
k
1
,
…
,
k
n
)
δ
2
n
−
1
,
∑
(
2
m
−
1
)
k
m
(
−
1
1
!
)
k
1
(
1
3
!
)
k
2
⋯
(
(
−
1
)
n
(
2
n
−
1
)
!
)
k
n
,
{\displaystyle E_{2n}=(-1)^{n-1}(2n-1)!\sum _{0\leq k_{1},\ldots ,k_{n}\leq 2n-1}\left({\begin{array}{c}K\\k_{1},\ldots ,k_{n}\end{array}}\right)\delta _{2n-1,\sum (2m-1)k_{m}}\left({\frac {-1~}{1!}}\right)^{k_{1}}\left({\frac {1}{3!}}\right)^{k_{2}}\cdots \left({\frac {(-1)^{n}}{(2n-1)!}}\right)^{k_{n}},}
where in both cases
K
=
k
1
+
⋯
+
k
n
{\displaystyle K=k_{1}+\cdots +k_{n}}
and
(
K
k
1
,
…
,
k
n
)
≡
K
!
k
1
!
⋯
k
n
!
{\displaystyle \left({\begin{array}{c}K\\k_{1},\ldots ,k_{n}\end{array}}\right)\equiv {\frac {K!}{k_{1}!\cdots k_{n}!}}}
is a multinomial coefficient . The Kronecker delta 's in the above formulas restrict the sums over the k' s to
2
k
1
+
4
k
2
+
⋯
+
2
n
k
n
=
2
n
{\displaystyle 2k_{1}+4k_{2}+\cdots +2nk_{n}=2n}
and to
k
1
+
3
k
2
+
⋯
+
(
2
n
−
1
)
k
n
=
2
n
−
1
{\displaystyle k_{1}+3k_{2}+\cdots +(2n-1)k_{n}=2n-1}
, respectively.
As an example,
E
10
=
10
!
(
−
1
10
!
+
2
2
!
8
!
+
2
4
!
6
!
−
3
2
!
2
6
!
−
3
2
!
4
!
2
+
4
2
!
3
4
!
−
1
2
!
5
)
=
9
!
(
−
1
9
!
+
3
1
!
2
7
!
+
6
1
!
3
!
5
!
+
1
3
!
3
−
5
1
!
4
5
!
−
10
1
!
3
3
!
2
+
7
1
!
6
3
!
−
1
1
!
9
)
=
−
50
,
521.
{\displaystyle {\begin{aligned}E_{10}&=10!\left(-{\frac {1}{10!}}+{\frac {2}{2!8!}}+{\frac {2}{4!6!}}-{\frac {3}{2!^{2}6!}}-{\frac {3}{2!4!^{2}}}+{\frac {4}{2!^{3}4!}}-{\frac {1}{2!^{5}}}\right)\\&=9!\left(-{\frac {1}{9!}}+{\frac {3}{1!^{2}7!}}+{\frac {6}{1!3!5!}}+{\frac {1}{3!^{3}}}-{\frac {5}{1!^{4}5!}}-{\frac {10}{1!^{3}3!^{2}}}+{\frac {7}{1!^{6}3!}}-{\frac {1}{1!^{9}}}\right)\\&=-50,521.\end{aligned}}}
Determinant
E 2n is also given by the determinant
E
2
n
=
(
−
1
)
n
(
2
n
)
!
|
1
2
!
1
1
4
!
1
2
!
1
⋮
⋱
⋱
1
(
2
n
−
2
)
!
1
(
2
n
−
4
)
!
1
2
!
1
1
(
2
n
)
!
1
(
2
n
−
2
)
!
⋯
1
4
!
1
2
!
|
.
{\displaystyle {\begin{aligned}E_{2n}&=(-1)^{n}(2n)!~{\begin{vmatrix}{\frac {1}{2!}}&1&~&~&~\\{\frac {1}{4!}}&{\frac {1}{2!}}&1&~&~\\\vdots &~&\ddots ~~&\ddots ~~&~\\{\frac {1}{(2n-2)!}}&{\frac {1}{(2n-4)!}}&~&{\frac {1}{2!}}&1\\{\frac {1}{(2n)!}}&{\frac {1}{(2n-2)!}}&\cdots &{\frac {1}{4!}}&{\frac {1}{2!}}\end{vmatrix}}.\end{aligned}}}
Asymptotic approximation
The Euler numbers grow quite rapidly for large indices as
they have the following lower bound
|
E
2
n
|
>
8
n
π
(
4
n
π
e
)
2
n
.
{\displaystyle |E_{2n}|>8{\sqrt {\frac {n}{\pi }}}\left({\frac {4n}{\pi e}}\right)^{2n}.}
See also
References
External links