Jump to content

Quasi-triangular quasi-Hopf algebra

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by YellowMonkey (talk | contribs) at 06:18, 1 May 2006 (new maths page). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

A quasi-triangular quasi-Hopf algebra is a specialized form of a quasi-Hopf algebra defined by the Ukrainian mathematician Vladimir Drinfeld in 1989. It is also a generalized form of a quasi-triangular Hopf algebra.

A quasi-triangular quasi-Hopf algebra is a set where is a quasi-Hopf algebra and known as the R-matrix, is an invertible element such that

so that is the swtich map and

where and .

The quasi-Hopf algebra becomes triangular if in addition, .

The twisting of by is the same as for a quasi-Hopf algebra, with the additional definition of the twisted R-matrix

A quasi-triangular (resp. triangular) quasi-Hopf algebra with is a quasi-triangular (resp. triangular) Hopf algebra as the latter two conditions in the definition reduce the conditions of quasi-triangularity of a Hopf algebra .

Similarly to the twisting properties of the the quasi-Hopf algebra, the property of being quasi-triangular or triangular quasi-Hopf algebra is preserved by twisting.

See also

References

  • Vladimir Drinfeld, Quasi-Hopf algebras, Leningrad Math J. 1 (1989), 1419-1457
  • J.M. Maillet and J. Sanchez de Santos, Drinfeld Twists and Algebraic Bethe Ansatz, Amer. Math. Soc. Transl. (2) Vol. 201, 2000