Jump to content

Log-linear model

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Melcombe (talk | contribs) at 21:48, 12 July 2012 (distinguish log-linear and logistic). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A log-linear model is a mathematical model that takes the form of a function whose logarithm is a first-degree polynomial function of the parameters of the model, which makes it possible to apply (possibly multivariate) linear regression. That is, it has the general form

in which the fi(X) are quantities that are functions of the variables X, in general a vector of values, while c and the wi stand for the model parameters.

The term may specifically be used for:

The specific applications of log-linear models are where the output quantity lies in the range 0 to ∞, for values of the independent variables X, or more immediately, the transformed quantities fi(X) in the range −∞ to +∞. This may be contrasted to logistics models, similar to the logistic function, for which the output quantity lies in the range 0 to 1. Thus the contexts where these models are useful or realistic often depends on the range of the values being modelled.

See also