Jump to content

Seidel adjacency matrix

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 130.156.8.170 (talk) at 14:17, 12 July 2012. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

sex on fireeeeeeThe eigenvalue properties of the Seidel matrix are valuable in the study of strongly regular graphs.

See also

References

  • van Lint, J.H., and Seidel, J.J. (1966), Equilateral point sets in elliptic geometry. Indagationes Mathematicae, vol. 28 (= Proc. Kon. Ned. Aka. Wet. Ser. A, vol. 69), pp. 335-348.
  • Seidel, J. J. (1976), A survey of two-graphs. In: Colloquio Internazionale sulle Teorie Combinatorie (Proceedings, Rome, 1973), vol. I, pp. 481-511. Atti dei Convegni Lincei, No. 17. Accademia Nazionale dei Lincei, Rome.
  • Seidel, J.J. (1991), ed. D.G. Corneil and R. Mathon, Geometry and Combinatorics: Selected Works of J.J. Seidel. Boston: Academic Press. Many of the articles involve the Seidel matrix.
  • Seidel, J. J. "Strongly Regular Graphs with (-1,1,0) Adjacency Matrix Having Eigenvalue 3." Lin. Alg. Appl. 1, 281-298, 1968.